2 resultados para Steel AISI D6
em Repositório Institucional da Universidade Estadual de São Paulo - UNESP
Resumo:
The multiphase steels are gaining increasing attention in scientific studies because of the different mechanical and microstructural properties that the material can achieve under different thermomechanical and heat treatments that can be submitted. In the present study, it was made a microstructural study thru the triple attack technic associated with optical microscopy and mechanical characterization of medium carbon AISI 4350 steel thru a tensile strength test, subjected to three routes of heat treatment: annealing, quenching and tempering and isothermal annealing. It was verified the predominance of ferrite-perlite constituent in the specimen annealed, martensitic in the quenched and tempered specimen and bainitic in the annealed isothermally specimen. The annealed material showed a higher ductility, while the hardened and tempered specimen showed the highest hardness and ultimately the bainitic specimen showed a combination of the two abovementioned mechanical properties. Thus, we proved that the multiphase steel SAE 4350 can be a versatile material with great potential for various industrial applications
Resumo:
Due to the large use of steel in several processes around the world, there is the increasingly concern to find new materials and/or optimization and improvement of the processes, as the need to reduce the cost and a productivity increase in the primary industry, such as the siderurgy. The rolling is the most used mechanical process in the world and therefore is required the development of new tools in high volume and with optimum characteristics to support the market demand. Forged rolls used are for rolling. These rolls have heat treatment that has the purpose to achieve the appropriated mechanical properties to support the variables of the rolling process. The objective of this work is to analyze the hardness profile and the microstructure a tool steel similar to AISI A2, forged in an opened die process and submitted to heat treatment with water-cooling. The results allowed plotting a hardness profile and performing a microstructure analysis, and whereby to confirm that the heat treatment is not a quenching, but it is a material beneficiation by the hardening of superficial layer, since there is no martensitic microstructure. Therefore, this paper provides the support to future studies about the possibility to perform enhancements in this thermal heat made in the rolls produced at Gerdau Plant in Pindamonhangaba