2 resultados para Spectral Element Method

em Repositório Institucional da Universidade Estadual de São Paulo - UNESP


Relevância:

80.00% 80.00%

Publicador:

Resumo:

The torsional stiffness of chassis is one of the most important properties of a vehicle's structure and therefore its measurement is important. For the first time, the torsional stiffness was considered on the design of a prototype Baja SAE of the team from UNESP - FEG, Equipe Piratas do Vale Bardahl. According to the team's opinion, the increase of stiffness on this prototype, called MB1114, made possible a great improvement in its performance during competitions. In this work, the experimental evaluation of the torsional stiffness from this prototype is performed, detailing the analysis of results, as well as, the hysteresis' effect, least-squares regression and uncertainty analysis. It also shows that it is possible to measure the torsional stiffness of chassis with a low experimental uncertainty without expending many resources. The test rig costed R$ 32,50 due the reuse of materials and the use of instrumentation already available on campus. Furthermore, it is simple to produce and can be easily stocked. Those features are important for Baja and Formula SAE teams. Lastly, the measured value is used to validate the finite element analysis performed by the team during this prototype's design, because similar studies will be performed for the new cars. After investigating the finite element analysis, one result 13,5% higher than the measured value was reached. This difference is believed to be occurred due the imperfections of the finite element model, in other words, for not been possible to simulate every phenomena present on the real model

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The search for mechanical components validation methods, employed in product development sector, becomes more avid for less expensive solutions. As a result, programs that can simulate forces acting on a given part through finite element method are gaining more space in the market, once this process consumes less capital when compared to currently-employed empirical validation. This article shows the simulation of an off-road prototype suspension through such technique, using ground excitation history coming from field measurements and also by making use of a specific tool for obtaining dynamic loads from the model in question. The results shown at the end is key for future enhancements aiming mass reduction, for example, that may be executed on the prototype suspension system discussed here