4 resultados para NANOSTRUCTURED CAWO4
em Repositório Institucional da Universidade Estadual de São Paulo - UNESP
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The benzoxaxine resin is a new class of thermoset phenolic resin, which is presenting, in the lasts decades, a great application in the aircraft industry due mainly to its excellent mechanical and thermal properties. This resin associates the mechanical properties of epoxy resin with the thermal and flame retardant properties of phenolic resin. In this context, they are considered polymers of high performance and they are excellent candidates to replace the current thermoset matrices used in the processing of high performance composites. Thus, in this study nanostructured composites Benzoxazine/CNT were produced at different concentrations of functionalized and non-functionalized CNT (0,1%; 0,5% and 1,0% w/w). The thermal stability of the benzoxazine resin and its nanostructured composites was studied using thermogravimetry (TGA) and degradation kinetic model Ozawa-Wall-Flynn (O-W-F). The thermal characterization also included differential scanning calorimetry (DSC) and dynamic-mechanical analysis, infrared spectroscopy with Fourier transform (FTIR) and scanning electron microscopy (SEM).The introduction of non-functionalized CNT at low concentrations resulted in nanostructured composites with better thermal properties in relation to the neat resin. For all cases, however, the dispersion of CNT in the matrix was ineffective
Resumo:
The development of nanostructured materials have aroused great interest of the industries all over the country, since they enable the development of devices that can be used as gate insulators on silicon transistors, electrochromic devices, solid electrolyte oxygen sensors and as a photoluminescent materials . In this project, it is proposed to investigate the optical properties of CeO2 modified with rare earth Er processed in hydrothermal-microwave. The synthesis of one-dimensional nanostructures (1D) was measured from dilute aqueous solutions of acids and salts of starting reagents in the presence of chemical basis, after these aqueous solutions were processed on hydrothermal-microwave to particle growth. The particles obtained after processing were characterized by X-ray Diffraction, Rietveld Analysis and Raman Spectroscopy. The particle morphology was observed by scanning electron microscopy with field emission gun. The synthesis of 1D nanostructures are evaluated for different surfactants and starting precursors (ceria different salts), pH, temperature and pressure which can modify the morphology of the nanostructures. Combining laboratory experiments and theoretical calculations it was desired to understand the organization of the nanoparticles and their resulting structure. Strict control of chemical homogeneity, crystal structure, microstructure and interaction of the CeO2 cluster with different surfactants using the Hartree-Fock method, was intended to obtain properties compatible with their use in catalysts and optical devices. The use of mineralizer agent KOH and 8 minutes of processing time synthesis conditions were chosen to evaluate the effect of Er dopant. It has been proved that this doping with rare earth increases the photoluminescent properties of the compound obtained without change the structural and morphological propreties of ceria
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)