2 resultados para Manuseio
em Repositório Institucional da Universidade Estadual de São Paulo - UNESP
Resumo:
Global competitiveness has been increased significantly in the last decade and, as consequence, companies are always looking for developing better processes in supply chain operations in order to maintain their competitive costs and keep themselves in the business. Logistics operations represent a large part of the product's final cost. Transportation can represent more than fifty percent of final cost sometimes. The solutions for cutting and packing problems consist in simple and low investment actions, as enhancing the arrangement of the transported load in order to decrease both material and room wastes. As per the presented reasons, the objective of this paper is to show and analyze a real application of a mathematical model to solve a manufacturer pallet-loading problem, comparing results from the model execution and the solution proposed by the company studied. This study will not only find the best arrangement to load pallets (which will optimize storage and transportation process), but also to check the effectiveness of existing modeling in the literature. For this study a computational package was used, which consists of a modeling language GAMS with the CPLEX optimization solver and two other existing software in the market, all of them indicating that an accurate mathematical model for solving this kind of problem in a two-dimensional approach is difficult to be found, in addition to a long execution time. However, the study and the software utilization indicate that the problem would be easily solved by heuristics in a shorter execution time
Resumo:
Nowadays, we live in a time of rapid research for technological advances, in a way that this pursuit of new technologies is deeply connected to the diversity of new materials that have been developed by mankind. It deals with issues such as materials with enhanced properties which offer better quality, less cost and high performance, while they are accessible both in their production and moment of operation. In this context, it was required to develop electrodes that were easy to prepare as well as which present high electric conductivity and good mechanic proprieties by using carbonaceous material as basis. For this reason, the best parameters of the furfuryl resin cures were established with different pH variations through viscosimetric measurements and differential scanning calorimetry. By scanning electron microscopy (SEM) was possible to identify an increased porosity in the samples with pH 7 and pH 8, as compared to samples with lower pH content. After carbonization of the material, the characterization of monolithic glassy carbon was held by means of FT-IR techniques, Raman spectroscopy, X-ray diffraction and cyclic voltammetry. The spectra showed that the change in pH does not have significant influence on the crystallographic ordering of the material and its structural characteristics. As for the electrochemical character, the CVM electrodes showed excellent response, with good reversibility and wide potential window. Some voltammetric curve deviations were only observed for the sample with pH 4, which may be related to processing parameters adopted