3 resultados para Fibras ópticas - Dosímetros

em Repositório Institucional da Universidade Estadual de São Paulo - UNESP


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Coordination compounds of trivalent lanthanides cations with diphenylphosphinate are originated from direct reaction between a lanthanide salt and diphenylphosphinic acid. These complexes have peculiar and intriguing features, as (i) quickly obtainment through wet process precipitation, (ii) appreciable thermal stability, similar to inorganic phosphates, (iii) polymeric structure, and consequently, (iv) low solubility in both polar and non-polar solvents. Nowadays, coordination polymers are classified as coordination networks or, in case of porous materials, as metal-organic frameworks (MOFs). By this study, we aim to determine some optical properties of rare-earth diphenylphosphinate (RE = La3+, Eu3+, Gd3+, Lu3+) and conduct an updated classification of these compounds, bringing more details of its structure and the possible proposal of new materials with applications in lighting, detection of ionizing radiation and magnetism. The complexes of trivalent rare-earth cation with diphenylphosphinate were prepared by direct mixture of diphenylphosphinic acid with rare-earth metal chloride, both in ethanolic solution. The solution of diphenylphosphinic acid was kept in a beaker under constant stirring with pH measurements of the solution and gadolinium chloride solution was then dripped slowly with the aid of a burette until its complete addition; the following metal:ligand molar ratios were tested: 1:1, 1:2, 1:3, 2:1 e 3:1. The compounds were characterized by spectroscopic and structural techniques. By Fourier Transform Infrared Spectroscopy (FT-IR), it was possible to check the total ionization of diphenylphosphinic acid in synthesized complexes, confirmed by the absence of the band type A, B, C related to ѵ(O-H) of the acid (2663 cm-1, 2168 cm-1, 1684 cm-1), as well as the disappearance of ѵ(P-OH)=961 cm-1. Furthermore, the occurrence of bands shifts of ѵ(POO-) [symmetrical and asymmetrical] of...

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ceramic powders based on Zn3Ga2Ge2O10: Cr3+ X% (X = 0.0; 0.5; 0.75; 1.0) were synthesized by solid-state reaction method. The gallium-zinc germanate doped with chromium presents an interesting property of phosphorescence, that means, it is capable of emitting light when excited by a source of radiation, and such emission remains for some time after stopping the source. For this reason, these materials can be widely applied in night-vision surveillance, (through the use of solar energy, for example), electronic devices screen, emergency routes signals, control panels indicators in dark environments, etc. In this job were considered different amounts of dopant in order to perform a comparison of structural and photoluminescent properties. For that, some analyses were performed on samples, such as XRD, FT-Raman, SEM, UV-vis and photoluminescence measurements (PL). Such analysis allowed to infer that the presence of chromium results in no phase transformation, so that the four compositions have the same set of phases: cubic, rhombohedral and hexagonal. Although the structure was not changed, chromium influences other properties / characteristics of these materials. Examples are: increase of band-gap, decrease of average particle size, small changes in binding energy checked by Raman and especially the increase of photoluminescent property. The chromium ions have great ease in replacing gallium ions in octahedral sites, resulting in emission of light with a wavelength of about 700 nm (infrared region), which is justified by the spin-forbidden 2E 4A2 transition. In other words, chromium is a favorable luminescent center, acting as a trap in the crystal structure, since it imprisons the excitation energy easily and releases it gradually, allowing the phosphorescence. It was observed that the composition ... (Complete abastract click electronic access below)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Natural fibers have been highlighted as a renewable material that can replace materials from oil and its derivatives. In this context, Brazil becomes the perfect setting because of the diversity of fibers found in its territory, such as sugarcane, sisal, rice, cotton, coconut, pineapple, among others. The paineiras (Chorisia speciosa St. Hil) are typically Brazilian trees, which produce paina as fruit. These fruits are still little studied as a source of lignocellulose by research groups. This project aimed obtaining and characterization of cellulose nanofibers from the fibers from the paina fibers. Obtaining nanocellulose is practically made through simplified chemical processes. First, was performed out pre-treatments to removal of waxes, lignin and hemicellulose. The first stage of pre-treatment was carried out by alkaline aqueous solution of sodium hydroxide (NaOH) at 5wt%, where the fibers were under constant agitation for 1h at 70°C. Through alkali treatment it was possible to remove most of the lignin, hemicellulose, waxes and extractives. After the alkaline treatment was done bleaching with an aqueous solution of sodium hydroxide (NaOH) to 4wt% and hydrogen peroxide (H2O2) to 24wt% 1:1 during 2h with constant stirring to 50 °C. Through bleaching was possibe to remove residual lignin, and got cellulose with 72% of crystallinity. Nanocellulose of paina fibers was extracted using different conditions of acid hydrolysis with sulfuric acid (H2SO4) to 50wt%. After acid hydrolysis, the suspensions were centrifuged during 30 min and dialyzed in water to remove excess acid until neutral pH (6-7). Then the suspensions were passed by ultrasonification in an ultrasound 20 kHz during 1h in an ice bath. Untreated, alkalinized and bleached fibers as well as cellulose nanoparticles were characterized by the techniques of thermogravimetry ... (Complete abastract click electronic access below)