2 resultados para Ciclos limites
em Repositório Institucional da Universidade Estadual de São Paulo - UNESP
Resumo:
The optimization of energy generation systems has become a key issue for technological and social development, mainly in developing countries, where the electricity consumption rises sharply. Gas turbine cycle is an electricity generating system, which studies have demonstrated that inlet air cooling increases net power and thermal efficiency. Thus, this study intends to quantify these parameters for environments with different ambient temperature and relative humidity. Two types of air cooling were used: evaporative and absorption systems. The configuration parameters only with the gas turbine cycle were compared to those whose configuration allowed cooling. First, it was analyzed only evaporative cooling. Next, the absorption system was used for analysis. The last configuration mixed these two methods, dividing equally its flow. The results showed that thermal efficiency and net power increase in any case of cooling, with absorption system more advantageous in terms of generated energy, where an increase between 1 and 2 MW was observed, depending on the ambient conditions . When the two methods were working together at low relative humidity, it showed a thermal efficiency increase compared to absorption system, up to 2.4%. Evaporative cooling was less effective, but it is a good and cheap possibility to increase the cycle parameters at high temperature and low relative humidity
Resumo:
This paper addresses the three-phase induction motor by a thermal analysis of its operation, under the gaze of the standards of the Brazilian Association of Technical Standards that deal with working arrangements (operating cycles) defined by appropriate tests and for each use of the motor basis of this study, emphasizing especially the fact of the first three cycles are the cycles with greater possibilities of use for scaling a three-phase induction motor for the main industrial processes, will also be made an analysis of the reasons why the three-phase induction motors have a loss of power at altitudes above 1000 m above sea level and some methods of how to define how a three phase induction motor can be used in one of the first three working arrangements