2 resultados para Ambient temperature

em Repositório Institucional da Universidade Estadual de São Paulo - UNESP


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Many social wasps are known to use thermogenesis to warm up their flight muscles and are therefore able to forage under a broad range of ambient temperatures. However it is uncertain whether there exists a possible relation between ambient temperature and thermogenic capacity for tropical species, as we lack studies focusing on these species. Therefore, we examined the use of this mechanism in the neotropical Epiponini wasp Polybia ignobilis. More specifically, we used a thermographic camera to obtain data of the surface temperatures of three body regions (head, thorax and abdomen) of wasps during foraging activities (pre-flight, flight and post-flight) in cold [initial pe- riod of foraging activity: TAM : 15 − 20◦C] and warm [final period of foraging activity: TPM : 30 − 35◦C] conditions. Thorax temperature (Tth) was always higher than head (Th) and abdomen temperature (Tabd). In general, the lowest body temperatures were observed during the pre-flight period, while the highest values occurred upon the return of the wasps from the foraging flight. Except for the pre-flight period, Tth was always higher than Tabd, indicating that heat generated at the thorax was preferentially directed to the cephalic region. Therefore we confirmed the use of thermogenesis by a neotropical social wasp, although its magnitude was found modest compared to temperate species, which suggests a link between thermal environment and thermogenic capacity. We also showed that P. ignobilis modulates heat production as a function of ambient temperature (TA), maintaining a greater temperature difference (Tbody − TA) at cooler temperatures. Finally, we identified the cephalic region of wasps as an important route for the dissipation of the heat generated during flight

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The optimization of energy generation systems has become a key issue for technological and social development, mainly in developing countries, where the electricity consumption rises sharply. Gas turbine cycle is an electricity generating system, which studies have demonstrated that inlet air cooling increases net power and thermal efficiency. Thus, this study intends to quantify these parameters for environments with different ambient temperature and relative humidity. Two types of air cooling were used: evaporative and absorption systems. The configuration parameters only with the gas turbine cycle were compared to those whose configuration allowed cooling. First, it was analyzed only evaporative cooling. Next, the absorption system was used for analysis. The last configuration mixed these two methods, dividing equally its flow. The results showed that thermal efficiency and net power increase in any case of cooling, with absorption system more advantageous in terms of generated energy, where an increase between 1 and 2 MW was observed, depending on the ambient conditions . When the two methods were working together at low relative humidity, it showed a thermal efficiency increase compared to absorption system, up to 2.4%. Evaporative cooling was less effective, but it is a good and cheap possibility to increase the cycle parameters at high temperature and low relative humidity