4 resultados para two photon absorption

em Repositorio Institucional de la Universidad de Málaga


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The development of organic materials with 2PA has attracted intensive attention in the past two decades [1]. In two-photon bio-imaging applications the design of the chromophore requires to have a good cross-section (σ2PA) and good biological compatibility which depends on the molecular volume and polarity [2]. In this work, we present the design, synthesis and characterization of new indolium derivatives. These compounds are easy to achieve with good yields and good photophysical properties. In addition, time-dependent density functional theory (TDDFT) has been carried out to investigate the energy level of the ground and excited state. Their spectral properties and assays performed on cultured cells, demonstrate the potential of these compounds as fluorescent probes with application in two-photon bio-imaging.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fluorescent probes are essential tools for studying biological systems. The last decade has witnessed particular interest in the development of two-photon excitable probes, due to their advantageous features in tissue imaging compared to the corresponding one-photon probes [1]. Recently, we have designed and synthetized an aminonaphthalimide–BODIPY derivative as energy transfer cassettes and were found to show very fast and efficient BODIPY fluorescence sensitization [2]. This was observed upon one- and two-photon excitation, which extends the application range of the investigated bichromophoric dyads in terms of accessible excitation wavelengths. In order to increase the two-photon absorption of the system aminonaphthalimide fluorophore was replace with a Prodan analog (BODIPY dyad 1), which presents found a variety of applications as probes and labels in biology [3]. The two-photon absorption cross-section  of the dyads is significantly incremented by the presence of the 6-acetyl-2-naphthylamine donor group. The emission maximum of a BODIPY fluorophore can significantly be red-shifted in comparison to their precursors by conjugation with aromatic aldehydes. [4] We use a synthetic strategy to obtain BODIPY dyad 2 that incorporates an imidazole ring. This molecule can be used in biological media as a near-neutral pH indicator based on one- and two-photon excitable BODIPY acceptor.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Mercury is not an essential element for plant or animal life and it is a potential environmental toxic because of its tendency to form covalent bonds with organic molecules and the high stability of the Hg-C bond. Reports estimate a total mercury concentration in natural waters ranging from 0.2 to 100 ng L-1. Due to this fact, highly sensitive methods are required for direct determination of such extremely low levels. In this work, a rapid and simple method was developed for separation and preconcentration of mercury by flow injection solid phase extraction coupled with on-line chemical vapour generation electrothermal atomic absorption spectrometry. The system is based on chelating retention of the analyte onto the mini column filled with a mesoporous silica functionalized with 1,5 bis (di-2-pyridyl) methylene thiocarbohydrazide. The main aim of this work was to develop a precise and accurate method for the determination of the Hg. Under the optima conditions and 120 s preconcentration time, the detection limit obtained was 0.009 μg L-1, with RSDs 3.7 % for 0.2 μg L-1, 4.8 % for 1 μg L-1 and enrichment factor 4, Furthermore, the method proposed has permitted the determination of Hg with a reduction in the analysis time, the sample throughput was about 18 h-1, low consumption of reagents and sample volume. The method was applied to the determination of Hg in sea water and river water. For the quality control of the analytical performance and the validation of the newly developed method, the analysis of two certified samples, TMDA 54.4 Fortified Lake, and LGC6187 River sediment was addressed. The results showed good agreement with the certified values.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The study of photophysical and photochemical processes crosses the interest of many fields of research in physics, chemistry and biology. In particular, the photophysical and photochemical reactions, after light absorption by a photosynthetic pigment-protein complex, are among the fastest events in biology, taking place on timescales ranging from tens of femtoseconds to a few nanoseconds. Among the experimental approaches developed for this purpose, the advent of ultrafast transient absorption spectroscopy has become a powerful and widely used technique.[1,2] Focusing on the process of photosynthesis, it relies upon the efficient absorption and conversion of the radiant energy from the Sun. Chlorophylls and carotenoids are the main players in the process. Photosynthetic pigments are typically arranged in a highly organized fashion to constitute antennas and reaction centers, supramolecular devices where light harvesting and charge separation take place. The very early steps in the photosynthetic process take place after the absorption of a photon by an antenna system, which harvests light and eventually delivers it to the reaction center. In order to compete with internal conversion, intersystem crossing, and fluorescence, which inevitably lead to energy loss, the energy and electron transfer processes that fix the excited-state energy in photosynthesis must be extremely fast. In order to investigate these events, ultrafast techniques down to a sub-100 fs resolution must be used. In this way, energy migration within the system as well as the formation of new chemical species such as charge-separated states can be tracked in real time. This can be achieved by making use of ultrafast transient absorption spectroscopy. The basic principles of this notable technique, instrumentation, and some recent applications to photosynthetic systems[3] will be described. Acknowledgements M. Moreno Oliva thanks the MINECO for a “Juan de la Cierva-Incorporación” research contract. References [1] U. Megerle, I. Pugliesi, C. Schriever, C.F. Sailer and E. Riedle, Appl. Phys. B, 96, 215 – 231 (2009). [2] R. Berera, R. van Grondelle and J.T.M. Kennis, Photosynth. Res., 101, 105 – 118 (2009). [3] T. Nikkonen, M. Moreno Oliva, A. Kahnt, M. Muuronen, J. Helaja and D.M. Guldi, Chem. Eur. J., 21, 590 – 600 (2015).