2 resultados para test case generation
em Repositorio Institucional de la Universidad de Málaga
Resumo:
Facility location concerns the placement of facilities, for various objectives, by use of mathematical models and solution procedures. Almost all facility location models that can be found in literature are based on minimizing costs or maximizing cover, to cover as much demand as possible. These models are quite efficient for finding an optimal location for a new facility for a particular data set, which is considered to be constant and known in advance. In a real world situation, input data like demand and travelling costs are not fixed, nor known in advance. This uncertainty and uncontrollability can lead to unacceptable losses or even bankruptcy. A way of dealing with these factors is robustness modelling. A robust facility location model aims to locate a facility that stays within predefined limits for all expectable circumstances as good as possible. The deviation robustness concept is used as basis to develop a new competitive deviation robustness model. The competition is modelled with a Huff based model, which calculates the market share of the new facility. Robustness in this model is defined as the ability of a facility location to capture a minimum market share, despite variations in demand. A test case is developed by which algorithms can be tested on their ability to solve robust facility location models. Four stochastic optimization algorithms are considered from which Simulated Annealing turned out to be the most appropriate. The test case is slightly modified for a competitive market situation. With the Simulated Annealing algorithm, the developed competitive deviation model is solved, for three considered norms of deviation. At the end, also a grid search is performed to illustrate the landscape of the objective function of the competitive deviation model. The model appears to be multimodal and seems to be challenging for further research.
Resumo:
Las líneas de productos software son familias de productos que están íntimamente relacionados entre sí, normalmente formados por combinaciones de un conjunto de características software. Generalmente no es factible testar todos los productos de la familia, ya que el número de productos es muy elevado debido a la explosión combinatoria de características. Por este motivo, se han propuesto criterios de cobertura que pretenden probar al menos todas las interacciones entre características sin necesidad de probar todos los productos, por ejemplo todos los pares de características (emph{pairwise coverage}). Además, es deseable testar primero los productos compuestos por un conjunto de características prioritarias. Este problema es conocido como emph{Prioritized Pairwise Test Data Generation}. En este trabajo proponemos una técnica basada en programación lineal entera para generar este conjunto de pruebas priorizado. Nuestro estudio revela que la propuesta basada en programación lineal entera consigue mejores resultados estadísticamente tanto en calidad como en tiempo de computación con respecto a las técnicas existentes para este problema.