2 resultados para systems-based simulation
em Repositorio Institucional de la Universidad de Málaga
Resumo:
Abstract One of the most important challenges of this decade is the Internet of Things (IoT) that pursues the integration of real-world objects in Internet. One of the key areas of the IoT is the Ambient Assisted Living (AAL) systems, which should be able to react to variable and continuous changes while ensuring their acceptance and adoption by users. This means that AAL systems need to work as self-adaptive systems. The autonomy property inherent to software agents, makes them a suitable choice for developing self-adaptive systems. However, agents lack the mechanisms to deal with the variability present in the IoT domain with regard to devices and network technologies. To overcome this limitation we have already proposed a Software Product Line (SPL) process for the development of self-adaptive agents in the IoT. Here we analyze the challenges that poses the development of self-adaptive AAL systems based on agents. To do so, we focus on the domain and application engineering of the self-adaptation concern of our SPL process. In addition, we provide a validation of our development process for AAL systems.
Resumo:
The growing concern about the depletion of oil has spurred worldwide interest in finding alternative feedstocks for important petrochemical commodities and fuels. On the one hand, the enormous re-serves found (208 trillion cubic feet proven1), environmental sustainability and lower overall costs point to natural gas as the primary source for energy and chemicals in the near future.2 Nowadays the transformation of methane into useful chemicals and liquid fuels is only feasible via synthesis gas, a mixture of molecular hydrogen and carbon monoxide, that is further transformed to methanol or to hydrocarbons under moderate reaction conditions (150-350 °C and 10-100 bar).3 For a major cost reduction and in order to valorize small natural gas sources, either more efficient "syngas to products" catalysts should be produced or the manner in which methane is initially activated should be changed, ideally by developing catalysts able to directly oxidize methane to interesting products such as methanol. On the other hand, from the point of view of CO2 emissions, the use of the re-maining fossil resources will further contribute to global warming. In this scenario, the development of efficient routes for the transformation of CO2 into useful chemicals and fuels would represent a considerable step forward towards sustainability. Indeed, the environmental and economic incen-tives to develop processes for the conversion of CO2 into fuels and chemicals are great. However, for such conversions to become economically feasible, considerable research is necessary. In this lecture we will summarize our recent efforts into the design of new catalytic systems, based on MOFs and COFs, to address these challenges. Examples include the development of new Fe based FTS catalysts, electrocatalysts for the selective conversion of CO2 into syngas, the development of efficient catalysts for the utilization of formic acid as hydrogen storage vector and the development of new enzyme inspired systems for the direct transformation of methane to methanol under mild reaction conditions. References (1) http://www.clearonmoney.com/dw/doku.php?id=public:natural_gas_reserves. (2) Derouane, E. G.; Parmon, V.; Lemos, F.; Ribeiro, F. R. Sustainable Strategies for the Up-grading of Natural Gas: Fundamentals, Challenges, and Opportunities; Springer, 2005. (3) Rofer-DePoorter, C. K. Chemical Reviews. ACS Publications 1981, pp 447–474.