3 resultados para robust transitivity
em Repositorio Institucional de la Universidad de Málaga
Resumo:
Most approaches to stereo visual odometry reconstruct the motion based on the tracking of point features along a sequence of images. However, in low-textured scenes it is often difficult to encounter a large set of point features, or it may happen that they are not well distributed over the image, so that the behavior of these algorithms deteriorates. This paper proposes a probabilistic approach to stereo visual odometry based on the combination of both point and line segment that works robustly in a wide variety of scenarios. The camera motion is recovered through non-linear minimization of the projection errors of both point and line segment features. In order to effectively combine both types of features, their associated errors are weighted according to their covariance matrices, computed from the propagation of Gaussian distribution errors in the sensor measurements. The method, of course, is computationally more expensive that using only one type of feature, but still can run in real-time on a standard computer and provides interesting advantages, including a straightforward integration into any probabilistic framework commonly employed in mobile robotics.
Resumo:
Production companies use raw materials to compose end-products. They often make different products with the same raw materials. In this research, the focus lies on the production of two end-products consisting of (partly) the same raw materials as cheap as possible. Each of the products has its own demand and quality requirements consisting of quadratic constraints. The minimization of the costs, given the quadratic constraints is a global optimization problem, which can be difficult because of possible local optima. Therefore, the multi modal character of the (bi-) blend problem is investigated. Standard optimization packages (solvers) in Matlab and GAMS were tested on their ability to solve the problem. In total 20 test cases were generated and taken from literature to test solvers on their effectiveness and efficiency to solve the problem. The research also gives insight in adjusting the quadratic constraints of the problem in order to make a robust problem formulation of the bi-blend problem.
Resumo:
The suitable operation of mobile robots when providing Ambient Assisted Living (AAL) services calls for robust object recognition capabilities. Probabilistic Graphical Models (PGMs) have become the de-facto choice in recognition systems aiming to e ciently exploit contextual relations among objects, also dealing with the uncertainty inherent to the robot workspace. However, these models can perform in an inco herent way when operating in a long-term fashion out of the laboratory, e.g. while recognizing objects in peculiar con gurations or belonging to new types. In this work we propose a recognition system that resorts to PGMs and common-sense knowledge, represented in the form of an ontology, to detect those inconsistencies and learn from them. The utilization of the ontology carries additional advantages, e.g. the possibility to verbalize the robot's knowledge. A primary demonstration of the system capabilities has been carried out with very promising results.