1 resultado para proton chain transfer

em Repositorio Institucional de la Universidad de Málaga


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Metal phosphonates are multifunctional solids with tunable properties, such as internal H-bond networks, and high chemical and thermal stability [1]. In the present work, we describe the synthesis, structural characterization, luminescent properties and proton conduction performance of a new family of isostructural cationic compounds with general formula [Ln(H4NMP)(H2O)2]Cl·2H2O [Ln = La3+, Pr3+, Sm3+, Gd3+, Tb3+, Dy3+, Ho3+, H6NMP = nitrilotris(methylphosphonic acid)]. These solids are formed by positively charge layers, which consist of isolated LnO8 polyhedra and bridge chelating NMP2- ligands, held apart by chloride ions and water molecules. This arrangement result in extended interlayer hydrogen networks with possible proton transfer pathways. The proton conductivity of Gd3+ sample, selected as prototype of the series, was measured. In the range between range 25º and 80 ºC, the conductivity increase with the temperature up to a maximum value of 3.10-4 S·cm-1, at relative humidity of 95 %. The activation energy obtained from the Arrhenius plot (Figure 1) is in the range corresponding to a Grotthuss transfer mechanism.