1 resultado para medical imaging
em Repositorio Institucional de la Universidad de Málaga
Filtro por publicador
- ABACUS. Repositorio de Producción Científica - Universidad Europea (2)
- Aberdeen University (4)
- Aberystwyth University Repository - Reino Unido (1)
- AMS Tesi di Dottorato - Alm@DL - Università di Bologna (4)
- AMS Tesi di Laurea - Alm@DL - Università di Bologna (2)
- Applied Math and Science Education Repository - Washington - USA (1)
- ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha (5)
- Aston University Research Archive (4)
- Biblioteca de Teses e Dissertações da USP (2)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (63)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP) (21)
- Biblioteca Digital de Teses e Dissertações Eletrônicas da UERJ (2)
- Bioline International (1)
- BORIS: Bern Open Repository and Information System - Berna - Suiça (69)
- Boston University Digital Common (1)
- Bucknell University Digital Commons - Pensilvania - USA (1)
- Bulgarian Digital Mathematics Library at IMI-BAS (1)
- CaltechTHESIS (2)
- Cambridge University Engineering Department Publications Database (25)
- CentAUR: Central Archive University of Reading - UK (9)
- Chinese Academy of Sciences Institutional Repositories Grid Portal (5)
- Cochin University of Science & Technology (CUSAT), India (9)
- Collection Of Biostatistics Research Archive (1)
- Comissão Econômica para a América Latina e o Caribe (CEPAL) (1)
- CORA - Cork Open Research Archive - University College Cork - Ireland (6)
- DI-fusion - The institutional repository of Université Libre de Bruxelles (1)
- Digital Commons at Florida International University (5)
- DigitalCommons@The Texas Medical Center (32)
- DigitalCommons@University of Nebraska - Lincoln (1)
- DRUM (Digital Repository at the University of Maryland) (1)
- Duke University (28)
- Glasgow Theses Service (1)
- Helda - Digital Repository of University of Helsinki (11)
- Indian Institute of Science - Bangalore - Índia (29)
- Instituto Politécnico de Leiria (2)
- Instituto Politécnico do Porto, Portugal (2)
- Massachusetts Institute of Technology (1)
- National Center for Biotechnology Information - NCBI (2)
- Nottingham eTheses (1)
- Portal de Revistas Científicas Complutenses - Espanha (1)
- QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast (14)
- Queensland University of Technology - ePrints Archive (456)
- ReCiL - Repositório Científico Lusófona - Grupo Lusófona, Portugal (1)
- Repositório Científico da Universidade de Évora - Portugal (1)
- Repositório Científico do Instituto Politécnico de Lisboa - Portugal (1)
- Repositório Institucional da Universidade de Aveiro - Portugal (3)
- Repositorio Institucional de la Universidad de Málaga (1)
- Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho" (14)
- SAPIENTIA - Universidade do Algarve - Portugal (2)
- Savoirs UdeS : plateforme de diffusion de la production intellectuelle de l’Université de Sherbrooke - Canada (2)
- Scientific Open-access Literature Archive and Repository (1)
- Universidad del Rosario, Colombia (1)
- Universidad Politécnica de Madrid (11)
- Universidade Complutense de Madrid (1)
- Universidade Federal do Rio Grande do Norte (UFRN) (2)
- Universita di Parma (1)
- Universitat de Girona, Spain (2)
- Universitätsbibliothek Kassel, Universität Kassel, Germany (1)
- Université de Montréal (1)
- Université de Montréal, Canada (16)
- University of Canberra Research Repository - Australia (1)
- University of Queensland eSpace - Australia (47)
- University of Washington (3)
- WestminsterResearch - UK (3)
Resumo:
Abstract: Medical image processing in general and brain image processing in particular are computationally intensive tasks. Luckily, their use can be liberalized by means of techniques such as GPU programming. In this article we study NiftyReg, a brain image processing library with a GPU implementation using CUDA, and analyse different possible ways of further optimising the existing codes. We will focus on fully using the memory hierarchy and on exploiting the computational power of the CPU. The ideas that lead us towards the different attempts to change and optimize the code will be shown as hypotheses, which we will then test empirically using the results obtained from running the application. Finally, for each set of related optimizations we will study the validity of the obtained results in terms of both performance and the accuracy of the resulting images.