4 resultados para lack of catalytic mechanism

em Repositorio Institucional de la Universidad de Málaga


Relevância:

100.00% 100.00%

Publicador:

Resumo:

A large proportion of human populations suffer memory impairments either caused by normal aging or afflicted by diverse neurological and neurodegenerative diseases. Memory enhancers and other drugs tested so far against memory loss have failed to produce therapeutic efficacy in clinical trials and thus, there is a need to find remedy for this mental disorder. In search for cure of memory loss, our laboratory discovered a robust memory enhancer called RGS14(414). A treatment in brain with its gene produces an enduring effect on memory that lasts for lifetime of rats. Therefore, current thesis work was designed to investigate whether RGS14(414) treatment can prevent memory loss and furthermore, explore through biological processes responsible for RGS-mediated memory enhancement. We found that RGS14(414) gene treatment prevented episodic memory loss in rodent models of normal aging and Alzheimer´s disease. A memory loss was observed in normal rats at 18 months of age; however, when they were treated with RGS14(414) gene at 3 months of age, they abrogated this deficit and their memory remained intact till the age of 22 months. In addition to normal aging rats, effect of memory enhancer treatment in mice model of Alzheimer´s disease (AD-mice) produced a similar effect. AD-mice subjected to treatment with RGS14(414) gene at the age of 2 months, a period when memory was intact, showed not only a prevention in memory loss observed at 4 months of age but also they were able to maintain normal memory after 6 months of the treatment. We posit that long-lasting effect on memory enhancement and prevention of memory loss mediated through RGS14(414) might be due to a permanent structural change caused by a surge in neuronal connections and enhanced neuronal remodeling, key processes for long-term memory formation. A neuronal arborization analysis of both pyramidal and non-pyramidal neurons in brain of RGS14(414)-treated rats exhibited robust rise in neurites outgrowth of both kind of cells, and an increment in number of branching from the apical dendrite of pyramidal neurons, reaching to almost three times of the control animals. To further understand of underlying mechanism by which RGS14(414) induces neuronal arborization, we investigated into neurotrophic factors. We observed that RGS14 treatment induces a selective increase in BDNF. Role of BDNF in neuronal arborization, as well as its implication in learning and memory processes is well described. In addition, our results showing a dynamic expression pattern of BDNF during ORM processing that overlapped with memory consolidation further support the idea of the implication of this neurotrophin in formation of long-term memory in RGS-animals. On the other hand, in studies of expression profiling of RGS-treated animals, we have demonstrated that 14-3-3ζ protein displays a coherent relationship to RGS-mediated ORM enhancement. Recent studies have demonstrated that the interaction of receptor for activated protein kinase 1 (RACK1) with 14-3-3ζ is essential for its nuclear translocation, where RACK1-14-3-3ζ complex binds at promotor IV region of BDNF and promotes an increase in BDNF gene transcription. These observations suggest that 14-3-3ζ might regulate the elevated level of BDNF seen in RGS14(414) gene treated animals. Therefore, it seems that RGS-mediated surge in 14-3-3ζ causes elevated BDNF synthesis needed for neuronal arborization and enhanced ORM. The prevention of memory loss might be mediated through a restoration in BDNF and 14-3-3ζ protein levels, which are significantly decreased in aging and Alzheimer’s disease. Additionally, our results demonstrate that RGS14(414) treatment could be a viable strategy against episodic memory loss.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Calcium sulfoaluminate (CSA) cements/mortars are receiving increasing attention since their manufacture produces less CO2 than ordinary Portland cement (OPC) (up to 22% of decrease depending on its composition). These systems are complex and there are many parameters affecting their hydration mechanism, such as water-to-cement (w/c) ratio, type and amount of sulfate source, and so on. Low w/c ratios, within certain limits, may reduce the porosity and consequently, improve the mechanical strengths. However, it is accompanied by an increasing of viscosity and lack of both workability and homogeneity, with the consequent negative effect on the mechanical properties. The dispersion of the particles through the adsorption of the right amount and type of additives, such as superplasticizers, is a key point to improve the workability of mortars allowing both the preparation of homogeneous mixtures and the reduction of the amount of mixing water. This work deals with the preparation and optimization of homogeneous CSA-mortars with improved mechanical strengths. The optimum amount of superplasticizer was optimized through rheological measurements. The effect of different amounts of the superplasticizer on the viscosity of the mortars, its hydration mechanism and corresponding mechanical properties has been studied and will be discussed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We have shown Galanin(GAL) and Neuropeptide Y Y1(NPYY1) interactions at behavioural, cellular and receptor levels through GALR2/NPYY1R heterodimers in the amygdala. The aim of this work was to analyze GAL/NPYY1R interactions in the Dentate Gyrus(DG) of the Hippocampus, using autoradiographic, in situ hybridization and in situ proximity ligation assay(PLA). Rats(n=6) were sacrificed 15 minutes or 5 hours after icv injections of GAL(3nmol) and DG sections were incubated with NPYY1R agonist [I125]-[Leu31,Pro34]PYY(25 pM) or NPYY1R-33PdATP specific probe, for autoradiography and in situ hybridization respectively. Autoradiograms were analyzed using NIH image analysis system and Student’s unpaired t-test was used. For PLA, DG sections were incubated with anti-GALR2 Rabbit(1:100) and anti-NPYY1R Goat(1:200). PLA signals were detected with PLA PLUS or MINUS probes for rabbit or goat/mouse antibodies. PLA signals were visualized by using a confocal microscope Leica TCS-SL confocal microscope(Leica). We observed that GAL significant increased the NPYY1R agonist [I125]-[Leu31,Pro34]PYY binding in the DG by 20% (p<0,05) and the NPYY1R mRNA expression in the granular layer of DG by 31% (p<0,001). Moreover, PLA-positive red clusters were found specifically in the polymorphic layer and subgranular zone of the DG. No PLA clusters were observed neither in the molecular layer of the DG nor in the corpus callosum, an area that seems to lack of GALR2 receptor. These results demonstrate a novel mechanism of interaction between GAL and NPY1R in the DG at receptor level, probably involving the formation of GALR2/NPYY1R heteroreceptor complexes. Study supported by Junta de Andalucia CVI6476.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Stress serves as an adaptive mechanism and helps organisms to cope with life-threatening situations. However, individual vulnerability to stress and dysregulation of this system may precipitate stress-related disorders such as depression. The neurobiological circuitry in charge of dealing with stressors has been widely studied in animal models. Recently our group has demonstrated a role for lysophosphatidic acid (LPA) through the LPA1 receptor in vulnerability to stress, in particular the lack of this receptor relates to robust decrease of adult hippocampal neurogenesis and induction of anxious and depressive states. Nevertheless, the specific abnormalities in the limbic circuit in reaction to stress remains unclear. The aim of this study is to examine the differences in the brain activation pattern in the presence or absence of LPA1 receptor after acute stress. For this purpose, we have studied the response of maLPA1-null male mice and normal wild type mice to an intense stressor: Tail Suspension Test. Activation induced by behaviour of brain regions involved in mood regulation was analysed by stereological quantification of c-Fos immunoreactive positive cells. We also conducted multidimensional scaling analysis in order to unravel coativation between structures. Our results revealed hyperactivity of stress-related structures such as amygdala and paraventricular nucleus of the hypothalamus in the knockout model and different patterns of coactivation in both genotypes using a multidimensional map. This data provides further evidence to the engagement of the LPA1 receptors in stress regulation and sheds light on different neural pathways under normal and vulnerability conditions that can lead to mood disorders.