2 resultados para computational fluid dynamic

em Repositorio Institucional de la Universidad de Málaga


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Findings on the role that emotion plays in human behavior have transformed Artificial Intelligence computations. Modern research explores how to simulate more intelligent and flexible systems. Several studies focus on the role that emotion has in order to establish values for alternative decision and decision outcomes. For instance, Busemeyer et al. (2007) argued that emotional state affects the subjectivity value of alternative choice. However, emotional concepts in these theories are generally not defined formally and it is difficult to describe in systematic detail how processes work. In this sense, structures and processes cannot be explicitly implemented. Some attempts have been incorporated into larger computational systems that try to model how emotion affects human mental processes and behavior (Becker-Asano & Wachsmuth, 2008; Marinier, Laird & Lewis, 2009; Marsella & Gratch, 2009; Parkinson, 2009; Sander, Grandjean & Scherer, 2005). As we will see, some tutoring systems have explored this potential to inform user models. Likewise, dialogue systems, mixed-initiative planning systems, or systems that learn from observation could also benefit from such an approach (Dickinson, Brew & Meurers, 2013; Jurafsky & Martin, 2009). That is, considering emotion as interaction can be relevant in order to explain the dynamic role it plays in action and cognition (see Boehner et al., 2007).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Most of the current domestic installations are single phase, with contracted power equal to or less than 15 kW and with a potential difference of 230 V. When consumption is expected to be higher you choose to use three different alternating currents with a difference voltage of 400 V between them, which are called phases. This enables the subdivision of the installation in different single-phase circuits, fed independently with the neutral installation. These couples have, in turn, a difference in voltage of 230 V. The neutral is common for all three phases so that, if the system is balanced, no current flows through it. The problem with these installations is that they are designed to work in an offset manner, using phase loads, and simultaneously an equal amount of energy consumed by the three phases of the network. Connection to each of the phases makes independent single-phase loads or disturbance of the operation of the original phase circuit and, consequently, the corresponding increases in consumption, heating of engines, etc.