5 resultados para biodigested sewage sludge
em Repositorio Institucional de la Universidad de Málaga
Resumo:
During dry periods in the Mediterranean area, the lack of water entering the soil matrix reduces organic contribu- tions to the soil. These processes lead to reduced soil fertility and soil vegetation recovery which creates a positive feedback process that can lead to desertification. Restoration of native vegetation is the most effective way to regenerate soil health, and control runoff and sediment yield. In Mediterranean areas, after a forestry proposal, it is highly common to register a significant number of losses for the saplings that have been introduced due to the lack of rainfall. When no vegetation is established, organic amendments can be used to rapidly protect the soil surface against the erosive forces of rain and runoff. In this study we investigated the hydrological effects of five soil treatments in relation to the temporal vari- ability of the available water for plants. Five amendments were applied in an experimental set of plots: straw mulching; mulch with chipped branches of Aleppo Pine (Pinus halepensis L.); TerraCotten hydroabsobent polymers; sewage sludge; sheep manure and control. Plots were afforested following the same spatial pattern, and amendments were mixed with the soil at the rate 10 Mg ha-1. In control plots, during June, July, August and September, soils were registered below the wilting point, and therefore, in the area of water unusable by plants. These months were coinciding with the summer mediter- ranean drought. This fact justifies the high mortality found on plants after the seeding plan. Similarly, soils have never exceeded the field capacity value measured for control plots. Conversely, in the straw and pinus mulch, soils were above the wilting point during a longer time than in control plots. Thus, the soil moisture only has stayed below the 4.2 pF suction in July, July and August. Regarding the amount of water available was also higher, especially in the months of December, January and February. However, the field capacity value measured has not showed any differences regarding the control. For these treatments, the survival sapling rates measured were the highest. Sludge, manure and polymers showed a moisture retention capacity slightly more limited than straw and pinus mulch. Likewise, it has been found that the area of usable water by plants was also lower, especially during the months of January and February. This situation is especially sharpened in plots amended with manure. In this treatment, the upper part of the soil profile was below the wilting point for six months a year (from April to August). For this treatment, the survival sapling rates measured were the lowest. In conclusion, from a land management standpoint, the pinus and straw mulch treatments have been shown as effective methods reducing water stress for plants. In this research, mulching has been proved as a significant method to reduce the mortality sapling rates during the mediterranean summer drought.
Resumo:
Restoring the native vegetation is the most effective way to regenerate soil health. Under these conditions, vegetation cover in areas having degraded soils may be better sustained if the soil is amended with an external source of organic matter. The addition of organic materials to soils also increases infiltration rates and reduces erosion rates; these factors contribute to an available water increment and a successful and sustainable land management. The goal of this study was to analyze the effect of various organic amendments on the aggregate stability of soils in afforested plots. An experimental paired-plot layout was established in southern of Spain (homogeneous slope gradient: 7.5%; aspect: N170). Five amendments were applied in an experimental set of plots: straw mulching; mulch with chipped branches of Aleppo Pine (Pinus halepensis L.); TerraCotten hydroabsobent polymers; sewage sludge; sheep manure and control. Plots were afforested following the same spatial pattern, and amendments were mixed with the soil at the rate 10 Mg ha-1. The vegetation was planted in a grid pattern with 0.5 m between plants in each plot. During the afforestation process the soil was tilled to 25 cm depth from the surface. Soil from the afforested plots was sampled in: i) 6 months post-afforestation; ii) 12 months post-afforestation; iii) 18 months post-afforestation; and iv) 24 months post-afforestation. The sampling strategy for each plot involved collection of 4 disturbed soil samples taken from the surface (0–10 cm depth). The stability of aggregates was measured by wet-sieving. Regarding to soil aggregate stability, the percentage of stable aggregates has increased slightly in all the treatments in relation to control. Specifically, the differences were recorded in the fraction of macroaggregates (≥ 0.250 mm). The largest increases have been associated with straw mulch, pinus mulch and sludge. Similar results have been registered for the soil organic carbon content. Independent of the soil management, after six months, no significant differences in microaggregates were found regarding to the control plots. These results showed an increase in the stability of the macroaggregates when soil is amended with sludge, pinus mulch and straw much. This fact has been due to an increase in the number cementing agents due to: (i) the application of pinus, straw and sludge had resulted in the release of carbohydrates to the soil; and thus (ii) it has favored the development of a protective vegetation cover, which has increased the number of roots in the soil and the organic contribution to it.
Resumo:
During dry periods in the Mediterranean area, the lack of water entering the soil matrix reduces organic contribu- tions to the soil. These processes lead to reduced soil fertility and soil vegetation recovery which creates a positive feedback process that can lead to desertification. Restoration of native vegetation is the most effective way to regenerate soil health, and control runoff and sediment yield. In Mediterranean areas, after a forestry proposal, it is highly common to register a significant number of losses for the saplings that have been introduced due to the lack of rainfall. When no vegetation is established, organic amendments can be used to rapidly protect the soil surface against the erosive forces of rain and runoff. In this study we investigated the hydrological effects of five soil treatments in relation to the temporal vari- ability of the available water for plants. Five amendments were applied in an experimental set of plots: straw mulching; mulch with chipped branches of Aleppo Pine (Pinus halepensis L.); TerraCotten hydroabsobent polymers; sewage sludge; sheep manure and control. Plots were afforested following the same spatial pattern, and amendments were mixed with the soil at the rate 10 Mg ha-1. In control plots, during June, July, August and September, soils were registered below the wilting point, and therefore, in the area of water unusable by plants. These months were coinciding with the summer mediter- ranean drought. This fact justifies the high mortality found on plants after the seeding plan. Similarly, soils have never exceeded the field capacity value measured for control plots. Conversely, in the straw and pinus mulch, soils were above the wilting point during a longer time than in control plots. Thus, the soil moisture only has stayed below the 4.2 pF suction in July, July and August. Regarding the amount of water available was also higher, especially in the months of December, January and February. However, the field capacity value measured has not showed any differences regarding the control. For these treatments, the survival sapling rates measured were the highest. Sludge, manure and polymers showed a moisture retention capacity slightly more limited than straw and pinus mulch. Likewise, it has been found that the area of usable water by plants was also lower, especially during the months of January and February. This situation is especially sharpened in plots amended with manure. In this treatment, the upper part of the soil profile was below the wilting point for six months a year (from April to August). For this treatment, the survival sapling rates measured were the lowest. In conclusion, from a land management standpoint, the pinus and straw mulch treatments have been shown as effective methods reducing water stress for plants. In this research, mulching has been proved as a significant method to reduce the mortality sapling rates during the mediterranean summer drought.
Resumo:
Vegetation plays a fundamental role in soil conservation, so it is common to consider an increase in vegetation cover as one of the techniques to mitigate the effects of desertification in Mediterranean forest environments. There are two factors limiting the establishment and growth of seedlings in dry environments: (i) an excessive radiation and, (ii) the limited availability of water during the summer drought. During an afforestation plan, soil preparation is always necessary to reduce sapling mortality. The goal of this study was to analyze the effect of various organic amendments on soil according to chemical and hydrological properties, and to assess the effects of these parameters on an afforestal proposal under Mediterranean climate conditions. Five amendments were applied in an experimental set of plots: straw mulching (SM); mulch with chipped branches of Aleppo Pine (PM); TerraCotten hydroabsobent polymers (HP); sewage sludge (RU); sheep manure (SH) and control (C). Plots were afforested following the same spatial pattern, and amendments were mixed with the soil at the rate 10 Mg ha -1 . Under bare soil conditions (C), most of mortalities occurred during the summer period of the first year. A substantial positive effect of SM, PM and HP on the survival rates have been clearly observed. Conversely, when the soil was amended with SH, the survival rate quickly decreased or remained more or less constant regarding to C. In this study, the lack of differences on chemical properties indicates that there may exist other reasons to justify the differences that were found in the pattern of vegetation. However, regarding to the hydrological properties some differences have been found. In C, soils were registered below the wilting point during 4 months a year, and therefore, in the area of water unusable by plants. These months were coinciding with the summer Mediterranean drought and can justify the high mortality found on plants. Conversely, in SM, PM and HP, soil moisture remained below the wilting point less period than C and, the plant available water was also higher. In these treatments, the survival sapling rates measured were the highest. SH showed water holding capacity slightly more limited than C. For this treatment, the survival sapling rates measured were the lowest. In conclusion, from a land management standpoint, the PM, SM and HP have been proved as a significant method to reduce sapling mortality rates during the Mediterranean summer drought.
Resumo:
Object-oriented modeling is spreading in current simulation of wastewater treatments plants through the use of the individual components of the process and its relations to define the underlying dynamic equations. In this paper, we describe the use of the free-software OpenModelica simulation environment for the object-oriented modeling of an activated sludge process under feedback control. The performance of the controlled system was analyzed both under normal conditions and in the presence of disturbances. The object-oriented described approach represents a valuable tool in teaching provides a practical insight in wastewater process control field.