2 resultados para Triton-X-100

em Repositorio Institucional de la Universidad de Málaga


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Graphene-based nanomaterials are a kind of new technological materials with high interest for physicists, chemists and materials scientists. Graphene is a two-dimensional (2-D) sheet of carbon atoms in a hexagonal configuration with atoms bonded by sp2 bonds. These bonds and this electron configuration provides the extraordinary properties of graphene, such as very large surface area, a tunable band gap, high mechanical strength and high elasticity and thermal conductivity [1]. Graphene has also been investigated for preparation of composites with various semiconductors like TiO2, ZnO, CdS aiming at enhanced photocatalytic activity for their use for photochemical reaction as water splitting or CO2 to methanol conversion [2-3]. In this communication, the synthesis of porous graphene@TiO2 obtained from a powder graphite recycled, supplied by ECOPIBA, is presented. This graphite was exfoliated, using a nonionic surfactant (Triton X-100) and sonication. Titanium(IV) isopropoxide was used as TiO2 source. After removing the surfactant with a solution HCl/n-propanol, a porous solid is obtained with a specific area of 358 m2g-1. The solid was characterized by XRD, FTIR, XPS, EDX and TEM. Figure 1 shows the graphene 2D layer bonded with nanoparticles of TiO2. When a water suspension of this material is exposed with UV-vis radiation, water splitting reaction is carried out and H2/O2 bubbles are observed (Figure 2)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The interest in carbon nanomaterials with high transparency and electrical conductivity has grown within the last decade in view of a wide variety of applications, including biocompatible sensors, diagnostic devices and bioelectronic implants. The aim of this work is to test the biocompatibility of particular nanometer-thin nanocrystalline glass-like carbon films (NGLC), a disordered structure of graphene flakes joined by carbon matrix (Romero et al., 2016). We used a cell line (SN4741) from substantia nigra dopaminergic cells derived from transgenic mouse embryo cells (Son et al., 1999). Some cells were cultured on top of NGLC films (5, 20 and 80 nm) and other with NGLC nanoflakes (approx. 5-10 mm2) in increasing concentrations: 1, 5, 10, 20 and 50 μg/ml, during 24 h, 3 days and 7 days. Cells growing in normal conditions were defined under culture with DMEM supplemented with 10% FCS, Glucose (0,6%), penicillin-streptomycin (50U/ml) and L-glutamine (2mM) at 5%CO2 humidified atmosphere. Nanoflakes were resuspended in DMEM at the stock concentration (2 g/l). The experiments were conducted in 96 well plates (Corning) using 2500 cells per well. For MTT analysis, the manufacturer recommendations were followed (Roche, MTT kit assay): a positive control with a 10% Triton X-100 treatments (15 minutes) and a negative control without neither Triton X-100 nor NGLC. As apoptosis/necrosis assay we used LIVE/DEAD® Viability/Cytotoxicity Assay Kit (Invitrogen). In a separate experiment, cells were cultured on top of the NGLC films for 7 days. Primary antibodies: anti-synaptophysin (SYP, clone SY38, Chemicon) and goat anti-GIRK2 (G-protein-regulated inward-rectifier potassium channel 2 protein) (Abcom) following protocol for immunofluorescence. WB for proteins detection performed with a polyclonal anti-rabbit proliferating cell nuclear antigen (PCNA). Results demonstrated the biocompatibility with different concentration of NGLC varying the degree of survival from a low concentration (1 mg/ml) in the first 24 h to high concentrations (20-50 g/ml) after 7 days as it is corroborated by the PCNA analysis. Cells cultured on top of the film showed after 7 days axonal-like alignment and edge orientation as well as net-like images. Neuronal functionality was demonstrated to a certain extent through the analysis of coexistence between SYP and GIRK2. In conclusion, this nanomaterial could offer a powerful platform for biomedical applications such as neural tissue engineering