1 resultado para TRAVELING SALESMAN PROBLEM
em Repositorio Institucional de la Universidad de Málaga
Filtro por publicador
- Abertay Research Collections - Abertay University’s repository (1)
- Aberystwyth University Repository - Reino Unido (6)
- Adam Mickiewicz University Repository (5)
- AMS Tesi di Dottorato - Alm@DL - Università di Bologna (6)
- AMS Tesi di Laurea - Alm@DL - Università di Bologna (2)
- Aquatic Commons (26)
- Archivo Digital para la Docencia y la Investigación - Repositorio Institucional de la Universidad del País Vasco (7)
- Aston University Research Archive (3)
- Biblioteca Digital de Teses e Dissertações Eletrônicas da UERJ (1)
- Boston University Digital Common (6)
- Brock University, Canada (27)
- Bulgarian Digital Mathematics Library at IMI-BAS (3)
- CaltechTHESIS (10)
- Cambridge University Engineering Department Publications Database (67)
- Center for Jewish History Digital Collections (3)
- Chinese Academy of Sciences Institutional Repositories Grid Portal (53)
- Cochin University of Science & Technology (CUSAT), India (8)
- Cornell: DigitalCommons@ILR (1)
- Dalarna University College Electronic Archive (4)
- DI-fusion - The institutional repository of Université Libre de Bruxelles (2)
- Digital Commons - Michigan Tech (1)
- Digital Commons at Florida International University (1)
- Diposit Digital de la UB - Universidade de Barcelona (1)
- Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland (1)
- DRUM (Digital Repository at the University of Maryland) (1)
- Duke University (3)
- eResearch Archive - Queensland Department of Agriculture; Fisheries and Forestry (5)
- Funes: Repositorio digital de documentos en Educación Matemática - Colombia (1)
- Greenwich Academic Literature Archive - UK (27)
- Helda - Digital Repository of University of Helsinki (19)
- Indian Institute of Science - Bangalore - Índia (135)
- Instituto Politécnico do Porto, Portugal (16)
- Massachusetts Institute of Technology (7)
- Ministerio de Cultura, Spain (42)
- National Center for Biotechnology Information - NCBI (2)
- Plymouth Marine Science Electronic Archive (PlyMSEA) (8)
- Portal de Revistas Científicas Complutenses - Espanha (2)
- QSpace: Queen's University - Canada (2)
- QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast (130)
- Queensland University of Technology - ePrints Archive (207)
- Repositório Científico do Instituto Politécnico de Lisboa - Portugal (1)
- Repositório Institucional da Universidade de Aveiro - Portugal (3)
- Repositorio Institucional de la Universidad de Málaga (1)
- Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho" (10)
- Research Open Access Repository of the University of East London. (1)
- RUN (Repositório da Universidade Nova de Lisboa) - FCT (Faculdade de Cienecias e Technologia), Universidade Nova de Lisboa (UNL), Portugal (2)
- SAPIENTIA - Universidade do Algarve - Portugal (9)
- School of Medicine, Washington University, United States (4)
- SerWisS - Server für Wissenschaftliche Schriften der Fachhochschule Hannover (1)
- Universidad del Rosario, Colombia (6)
- Universidade Complutense de Madrid (1)
- Universidade Federal do Rio Grande do Norte (UFRN) (14)
- Universitat de Girona, Spain (5)
- Universitätsbibliothek Kassel, Universität Kassel, Germany (14)
- Université de Lausanne, Switzerland (1)
- Université de Montréal (1)
- Université de Montréal, Canada (17)
- University of Michigan (3)
- University of Queensland eSpace - Australia (1)
- University of Southampton, United Kingdom (6)
- WestminsterResearch - UK (1)
Resumo:
Technologies for Big Data and Data Science are receiving increasing research interest nowadays. This paper introduces the prototyping architecture of a tool aimed to solve Big Data Optimization problems. Our tool combines the jMetal framework for multi-objective optimization with Apache Spark, a technology that is gaining momentum. In particular, we make use of the streaming facilities of Spark to feed an optimization problem with data from different sources. We demonstrate the use of our tool by solving a dynamic bi-objective instance of the Traveling Salesman Problem (TSP) based on near real-time traffic data from New York City, which is updated several times per minute. Our experiment shows that both jMetal and Spark can be integrated providing a software platform to deal with dynamic multi-optimization problems.