1 resultado para Stereo Vision
em Repositorio Institucional de la Universidad de Málaga
Filtro por publicador
- JISC Information Environment Repository (3)
- Aberystwyth University Repository - Reino Unido (1)
- Acceda, el repositorio institucional de la Universidad de Las Palmas de Gran Canaria. España (1)
- AMS Tesi di Dottorato - Alm@DL - Università di Bologna (1)
- AMS Tesi di Laurea - Alm@DL - Università di Bologna (3)
- Aquatic Commons (4)
- Archivo Digital para la Docencia y la Investigación - Repositorio Institucional de la Universidad del País Vasco (1)
- Aston University Research Archive (8)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP) (1)
- Biblioteca Digital de Teses e Dissertações Eletrônicas da UERJ (1)
- BORIS: Bern Open Repository and Information System - Berna - Suiça (6)
- Boston University Digital Common (20)
- Brock University, Canada (2)
- CaltechTHESIS (6)
- Cambridge University Engineering Department Publications Database (126)
- CentAUR: Central Archive University of Reading - UK (61)
- Chinese Academy of Sciences Institutional Repositories Grid Portal (26)
- Cochin University of Science & Technology (CUSAT), India (1)
- CORA - Cork Open Research Archive - University College Cork - Ireland (3)
- Dalarna University College Electronic Archive (9)
- Digital Archives@Colby (11)
- Digital Commons @ DU | University of Denver Research (1)
- Digital Commons @ Winthrop University (1)
- Digital Peer Publishing (1)
- DRUM (Digital Repository at the University of Maryland) (2)
- Duke University (5)
- Gallica, Bibliotheque Numerique - Bibliothèque nationale de France (French National Library) (BnF), France (10)
- Glasgow Theses Service (1)
- Greenwich Academic Literature Archive - UK (3)
- Helda - Digital Repository of University of Helsinki (6)
- Indian Institute of Science - Bangalore - Índia (22)
- Institute of Public Health in Ireland, Ireland (1)
- Instituto Politécnico do Porto, Portugal (8)
- Lume - Repositório Digital da Universidade Federal do Rio Grande do Sul (1)
- Massachusetts Institute of Technology (25)
- Ministerio de Cultura, Spain (3)
- Plymouth Marine Science Electronic Archive (PlyMSEA) (3)
- Portal de Revistas Científicas Complutenses - Espanha (1)
- QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast (82)
- Queensland University of Technology - ePrints Archive (219)
- ReCiL - Repositório Científico Lusófona - Grupo Lusófona, Portugal (2)
- Repositório Científico da Universidade de Évora - Portugal (1)
- Repositório Científico do Instituto Politécnico de Lisboa - Portugal (1)
- Repositório digital da Fundação Getúlio Vargas - FGV (3)
- Repositório Digital da UNIVERSIDADE DA MADEIRA - Portugal (1)
- Repositorio Institucional de la Universidad de Málaga (1)
- Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho" (2)
- Research Open Access Repository of the University of East London. (1)
- RUN (Repositório da Universidade Nova de Lisboa) - FCT (Faculdade de Cienecias e Technologia), Universidade Nova de Lisboa (UNL), Portugal (1)
- SAPIENTIA - Universidade do Algarve - Portugal (11)
- School of Medicine, Washington University, United States (1)
- The Scholarly Commons | School of Hotel Administration; Cornell University Research (1)
- Universidad Autónoma de Nuevo León, Mexico (2)
- Universidad de Alicante (1)
- Universidad del Rosario, Colombia (2)
- Universidad Politécnica de Madrid (8)
- Universidade Complutense de Madrid (1)
- Universidade Federal do Rio Grande do Norte (UFRN) (4)
- Universita di Parma (2)
- Universitat de Girona, Spain (15)
- Universitätsbibliothek Kassel, Universität Kassel, Germany (1)
- Université de Lausanne, Switzerland (2)
- Université de Montréal, Canada (31)
- Université Laval Mémoires et thèses électroniques (1)
- University of Queensland eSpace - Australia (1)
- University of Southampton, United Kingdom (4)
- University of Washington (1)
- WestminsterResearch - UK (1)
- Worcester Research and Publications - Worcester Research and Publications - UK (1)
Resumo:
Most approaches to stereo visual odometry reconstruct the motion based on the tracking of point features along a sequence of images. However, in low-textured scenes it is often difficult to encounter a large set of point features, or it may happen that they are not well distributed over the image, so that the behavior of these algorithms deteriorates. This paper proposes a probabilistic approach to stereo visual odometry based on the combination of both point and line segment that works robustly in a wide variety of scenarios. The camera motion is recovered through non-linear minimization of the projection errors of both point and line segment features. In order to effectively combine both types of features, their associated errors are weighted according to their covariance matrices, computed from the propagation of Gaussian distribution errors in the sensor measurements. The method, of course, is computationally more expensive that using only one type of feature, but still can run in real-time on a standard computer and provides interesting advantages, including a straightforward integration into any probabilistic framework commonly employed in mobile robotics.