2 resultados para Semicrystalline Polymers
em Repositorio Institucional de la Universidad de Málaga
Resumo:
In the last three decades, there has been a broad academic and industrial interest in conjugated polymers as semiconducting materials for organic electronics. Their applications in polymer light-emitting diodes (PLEDs), polymer solar cells (PSCs), and organic field-effect transistors (OFETs) offer opportunities for the resolution of energy issues as well as the development of display and information technologies1. Conjugated polymers provide several advantages including low cost, light weight, good flexibility, as well as solubility which make them readily processed and easily printed, removing the conventional photolithography for patterning2. A large library of polymer semiconductors have been synthesized and investigated with different building blocks, such as acenes or thiophene and derivatives, which have been employed to design new materials according to individual demands for specific applications. To design ideal conjugated polymers for specific applications, some general principles should be taken into account, including (i) side chains (ii) molecular weights, (iii) band gap and HOMO and LUMO energy levels, and (iv) suited morphology.3-6 The aim of this study is to elucidate the impact that substitution exerts on the molecular and electronic structure of π-conjugated polymers with outstanding performances in organic electronic devices. Different configurations of the π-conjugated backbones are analyzed: (i) donor-acceptor configuration, (ii) 1D lineal or 2D branched conjugated backbones, and (iii) encapsulated polymers (see Figure 1). Our combined vibrational spectroscopy and DFT study shows that small changes in the substitution pattern and in the molecular configuration have a strong impact on the electronic characteristics of these polymers. We hope this study can advance useful structure-property relationships of conjugated polymers and guide the design of new materials for organic electronic applications.
Resumo:
Crystalline metal phosphonates are referred to as a type of structurally versatile coordination polymers [1]. Many of them contain guest molecules (H2O, heterocyclics, etc.), acidic sites and, furthermore, their structure can be also amenable for post‐synthesis modifications in order to enhance desired properties [2]. In the present work, we examine the relationships between crystal structure and proton conductivity for several metal phosphonates derive from multifunctional ligands, such as 5-(dihydroxyphosphoryl)isophthalic acid (PiPhtA) [3] and 2-hydroxyphosphonoacetic acid (H3HPAA). Crystalline divalent metal derivatives show a great structural diversity, from 1D to 3D open-frameworks, possessing hydrogen-bonded water molecules and acid groups. These solids present a proton conductivity range between 7.2·10-6 and 1.3·10−3 S·cm-1. Upon exposure to ammonia vapor, from an aqueous solution, solid state transformations are observed accompanied of enhance proton conductivities. The stability of these solids under different environment conditions (temperature and relative humidities) as well as the influence of the ammonia adsorption on the proton conduction properties of the resulting solids will be discussed.