2 resultados para SRM module

em Repositorio Institucional de la Universidad de Málaga


Relevância:

20.00% 20.00%

Publicador:

Resumo:

We propose the SRM technology as a complementary method to the Western Blot for the detection and quantification of proteins in a sample. The technique Western Blot has its own limitations: i) only a protein-of-choice is detected, ignoring any non-relevant proteins, ii) the sensitivity of the technique depends on the specificity of the antibody and iii) Western Blot is expensive and time-consuming. The advantages of SRM with respect Western Blot are remarkable: i) you can detect up to hundreds of different proteins in a sample, ii) SRM is more sensitive, because just 50 copies of the target protein per cell are enough for the detection and iii) once it has been made an investment in the necessary machinery to develop this technique, the detection of proteins in a sample turns into a cheaper, faster, more specific and full-quantitative procedure, without the need of using antibodies. First of all, SRM requires the identification of little peptides, obtained by tryptic digestion, whose sequence must be unique for a single protein or isoform. There is software for that aim. Then, it’s necessary to create isotope-labeled peptides of that identified for acting as internal standards. That sample is introduced in a triple quadrupole mass spectrometer: it passes through a first quadrupole, which functions as a filter, where the fragments are selected, previously ionized, attending to the mass/charge (m/z) relation that correspond to that unique fragments of the protein of interest. In this first selection may be other peptides from other proteins, with the same m/z but with different sequence. To select those that are exclusive from the target protein, the fragments are moved to a second quadrupole, where they are fragmented again with a physical method, and so new smaller fragments are generated. All the new fragments are conduced to the third quadrupole, where just those which come from the protein of interest are selected, attending at their m/z again. The target peptide concentration is determined by measuring the observed signal response for the target peptide relative to that of the isotopic-labeled peptide, the concentration of which is calculated from a pre-determined calibration-response curve. Calibration curves have to be generated for each target peptide in the sample. Because SRM technology is increasing its use, there have been developed databases where the scientific community upload information about protocols and standards for each protein with the aim to facilitate the work to other researchers.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

PV energy is the direct conversion of solar radiation into electricity. In this paper, an analysis of the influence of parameters such as global irradiance or temperature in the performance of a PV installation has been carried out. A PV module was installed in a building at the University of Málaga, and these parameters were experimentally determined for different days and different conditions of irradiance and temperature. Moreover, IV curves were obtained under these conditions to know the open-circuit voltage and the short-circuit current of the module. With this information, and using the first law of thermodynamics, an energy analysis was performed to determine the energy efficiency of the installation. Similarly, using the second law of thermodynamics, an exergy analysis is used to obtain the exergy efficiency. The results show that the energy efficiency varies between 10% and 12% and the exergy efficiency between 14% and 17%. It was concluded that the exergy analysis is more suitable for studying the performance, and that only electric exergy must be considered as useful exergy. This exergy efficiency can be improved if heat is removed from the PV module surface, and an optimal temperature is reached.