2 resultados para SMALL ORGANIC-MOLECULES
em Repositorio Institucional de la Universidad de Málaga
Resumo:
Two main types of noncoding small RNA molecules have been found in plants: microRNAs (miRNAs) and small interfering RNAs (siRNAs). They differ in their biogenesis and mode of action, but share similar sizes (20-24 nt). Their precursors are processed by Dicer-Like RNase III (dcl) proteins present in Arabidopsis thaliana, and in their mature form can act as negative regulators of gene expression, being involved in a vast array of plant processes, including plant development, genomic integrity or response to stress. Small-RNA mediated regulation can occurs at transcriptional level (TGS) or at post-transcriptional level (PTGS). In recent years, the role of gene silencing in the regulation of expression of genes related to plant defence responses against bacterial pathogens is becoming clearer. Comparisons carried out in our lab between the expression profiles of different mutants affected in gene silencing, and plants challenged with Pseudomonas syringae pathovar tomato DC3000, led us to identify a set of uncharacterized R genes, belonging to the TIR-NBS-LRR gene family, differentially expressed in these conditions. Through the use of bioinformatics tools, we found a miRNA* of 22 nt putatively responsible for down-regulating expression of these R genes through the generation of siRNAs. We have also found that the corresponding pri-miRNA is down-regulated after PAMP-perception in a SA-dependent manner. We also demonstrate that plants with altered levels of miRNA* (knockdown lines or overexpression lines) exhibit altered PTI-associated phenotypes, suggesting a role for this miRNA* in this defence response against bacteria. In addition we identify one of the target genes as a negative regulator of defence response against Pseudomonas syringae.
Resumo:
Mercury is not an essential element for plant or animal life and it is a potential environmental toxic because of its tendency to form covalent bonds with organic molecules and the high stability of the Hg-C bond. Reports estimate a total mercury concentration in natural waters ranging from 0.2 to 100 ng L-1. Due to this fact, highly sensitive methods are required for direct determination of such extremely low levels. In this work, a rapid and simple method was developed for separation and preconcentration of mercury by flow injection solid phase extraction coupled with on-line chemical vapour generation electrothermal atomic absorption spectrometry. The system is based on chelating retention of the analyte onto the mini column filled with a mesoporous silica functionalized with 1,5 bis (di-2-pyridyl) methylene thiocarbohydrazide. The main aim of this work was to develop a precise and accurate method for the determination of the Hg. Under the optima conditions and 120 s preconcentration time, the detection limit obtained was 0.009 μg L-1, with RSDs 3.7 % for 0.2 μg L-1, 4.8 % for 1 μg L-1 and enrichment factor 4, Furthermore, the method proposed has permitted the determination of Hg with a reduction in the analysis time, the sample throughput was about 18 h-1, low consumption of reagents and sample volume. The method was applied to the determination of Hg in sea water and river water. For the quality control of the analytical performance and the validation of the newly developed method, the analysis of two certified samples, TMDA 54.4 Fortified Lake, and LGC6187 River sediment was addressed. The results showed good agreement with the certified values.