3 resultados para Robust Learning Algorithm

em Repositorio Institucional de la Universidad de Málaga


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Computational intelligent support for decision making is becoming increasingly popular and essential among medical professionals. Also, with the modern medical devices being capable to communicate with ICT, created models can easily find practical translation into software. Machine learning solutions for medicine range from the robust but opaque paradigms of support vector machines and neural networks to the also performant, yet more comprehensible, decision trees and rule-based models. So how can such different techniques be combined such that the professional obtains the whole spectrum of their particular advantages? The presented approaches have been conceived for various medical problems, while permanently bearing in mind the balance between good accuracy and understandable interpretation of the decision in order to truly establish a trustworthy ‘artificial’ second opinion for the medical expert.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Evolutionary algorithms alone cannot solve optimization problems very efficiently since there are many random (not very rational) decisions in these algorithms. Combination of evolutionary algorithms and other techniques have been proven to be an efficient optimization methodology. In this talk, I will explain the basic ideas of our three algorithms along this line (1): Orthogonal genetic algorithm which treats crossover/mutation as an experimental design problem, (2) Multiobjective evolutionary algorithm based on decomposition (MOEA/D) which uses decomposition techniques from traditional mathematical programming in multiobjective optimization evolutionary algorithm, and (3) Regular model based multiobjective estimation of distribution algorithms (RM-MEDA) which uses the regular property and machine learning methods for improving multiobjective evolutionary algorithms.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper, a musical learning application for mobile devices is presented. The main objective is to design and develop an application capable of offering exercises to practice and improve a selection of music skills, to users interested in music learning and training. The selected music skills are rhythm, melodic dictation and singing. The application includes an audio signal analysis system implemented making use of the Goertzel algorithm which is employed in singing exercises to check if the user sings the right musical note. This application also includes a graphical interface to represent musical symbols. A set of tests were conducted to check the usefulness of the application as musical learning tool. A group of users with different music knowledge have tested the system and reported to have found it effective, easy and accessible.