2 resultados para Recognition Memory
em Repositorio Institucional de la Universidad de Málaga
Resumo:
Ongoing quest for finding treatment against memory loss seen in aging and in many neurological and neurodegenerative diseases, so far has been unsuccessful and memory enhancers are seen as a potential remedy against this brain dysfunction. Recently, we showed that gene corresponding to a protein called regulator of G-protein signaling 14 of 414 amino acids (RGS14414) is a robust memory enhancer (Lopez-Aranda et al. 2009: Science). RGS14414-treatment in area V2 of visual cortex caused memory enhancement to such extent that it converted short-term object recognition memory (ORM) of 45min into long lasting long-term memory that could be traced even after many months. Now, through targeting of multiple receptors and molecules known to be involved in memory processing, we found that GluR2 subunit of AMPA receptor might be key to memory enhancement in RGS-animals. RGS14-animals showed a progressive increase in GluR2 protein expression while processing an object information which reached to highest level after 60min of object exposure, a time period required for conversion of short-term ORM into long-term memory in our laboratory set up. Normal rats could retain an object information in brain for 45min (short-term) and not for 60min. However, RGS-treated rats are able to retain the same information for 24h or longer (long-term). Therefore, highest expression of GluR2 subunit seen at 60min suggests that this protein might be key in memory enhancement and conversion to long-term memory in RGS-animals. In addition, we will also discuss the implication of Hebbian plasticity and interaction of brain circuits in memory enhancement.
Resumo:
Aims. The individual susceptibility to cocaine addiction, a factor of interest in the understanding and prevention of this disorder, may be predicted by certain behavioral traits. However, these are not usually taken into account in research, making it difficult to identify whether they are a cause or a consequence of drug use. Methods. Male C57BL/6J mice underwent a battery of behavioral tests (elevated plus maze, hole-board, novelty preference in the Y maze, episodic-like object recognition memory and forced swimming test), followed by a cocaine-conditioned place preference (CPP) training to assess the reinforcing effect of the drug. In a second study, we aimed to determine the existence of neurobiological differences between the mice expressing high or low CPP by studying the number of neurons in certain addiction-related structures: the medial prefrontal cortex, the basolateral amygdala and the ventral tegmental area. Results. Anxiety-like behaviors in the elevated plus maze successfully predicted the cocaine-CPP behavior, so that the most anxious mice were also more likely to search for cocaine in a CPP paradigm. In addition, these mice exhibited an increased number of neurons in the basolateral amygdala, a key structure in emotional response including anxiety expression, without differences in the others regions analyzed. Conclusions. Our results suggest a relevant role of anxiety as a psychological risk factor for cocaine vulnerability, with the basolateral amygdala as potential common neural center for both anxiety and addiction.