2 resultados para Real-world semantics

em Repositorio Institucional de la Universidad de Málaga


Relevância:

90.00% 90.00%

Publicador:

Resumo:

Abstract One of the most important challenges of this decade is the Internet of Things (IoT) that pursues the integration of real-world objects in Internet. One of the key areas of the IoT is the Ambient Assisted Living (AAL) systems, which should be able to react to variable and continuous changes while ensuring their acceptance and adoption by users. This means that AAL systems need to work as self-adaptive systems. The autonomy property inherent to software agents, makes them a suitable choice for developing self-adaptive systems. However, agents lack the mechanisms to deal with the variability present in the IoT domain with regard to devices and network technologies. To overcome this limitation we have already proposed a Software Product Line (SPL) process for the development of self-adaptive agents in the IoT. Here we analyze the challenges that poses the development of self-adaptive AAL systems based on agents. To do so, we focus on the domain and application engineering of the self-adaptation concern of our SPL process. In addition, we provide a validation of our development process for AAL systems.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Facility location concerns the placement of facilities, for various objectives, by use of mathematical models and solution procedures. Almost all facility location models that can be found in literature are based on minimizing costs or maximizing cover, to cover as much demand as possible. These models are quite efficient for finding an optimal location for a new facility for a particular data set, which is considered to be constant and known in advance. In a real world situation, input data like demand and travelling costs are not fixed, nor known in advance. This uncertainty and uncontrollability can lead to unacceptable losses or even bankruptcy. A way of dealing with these factors is robustness modelling. A robust facility location model aims to locate a facility that stays within predefined limits for all expectable circumstances as good as possible. The deviation robustness concept is used as basis to develop a new competitive deviation robustness model. The competition is modelled with a Huff based model, which calculates the market share of the new facility. Robustness in this model is defined as the ability of a facility location to capture a minimum market share, despite variations in demand. A test case is developed by which algorithms can be tested on their ability to solve robust facility location models. Four stochastic optimization algorithms are considered from which Simulated Annealing turned out to be the most appropriate. The test case is slightly modified for a competitive market situation. With the Simulated Annealing algorithm, the developed competitive deviation model is solved, for three considered norms of deviation. At the end, also a grid search is performed to illustrate the landscape of the objective function of the competitive deviation model. The model appears to be multimodal and seems to be challenging for further research.