3 resultados para Pareto optimality
em Repositorio Institucional de la Universidad de Málaga
Resumo:
Phylogenetic inference consist in the search of an evolutionary tree to explain the best way possible genealogical relationships of a set of species. Phylogenetic analysis has a large number of applications in areas such as biology, ecology, paleontology, etc. There are several criterias which has been defined in order to infer phylogenies, among which are the maximum parsimony and maximum likelihood. The first one tries to find the phylogenetic tree that minimizes the number of evolutionary steps needed to describe the evolutionary history among species, while the second tries to find the tree that has the highest probability of produce the observed data according to an evolutionary model. The search of a phylogenetic tree can be formulated as a multi-objective optimization problem, which aims to find trees which satisfy simultaneously (and as much as possible) both criteria of parsimony and likelihood. Due to the fact that these criteria are different there won't be a single optimal solution (a single tree), but a set of compromise solutions. The solutions of this set are called "Pareto Optimal". To find this solutions, evolutionary algorithms are being used with success nowadays.This algorithms are a family of techniques, which aren’t exact, inspired by the process of natural selection. They usually find great quality solutions in order to resolve convoluted optimization problems. The way this algorithms works is based on the handling of a set of trial solutions (trees in the phylogeny case) using operators, some of them exchanges information between solutions, simulating DNA crossing, and others apply aleatory modifications, simulating a mutation. The result of this algorithms is an approximation to the set of the “Pareto Optimal” which can be shown in a graph with in order that the expert in the problem (the biologist when we talk about inference) can choose the solution of the commitment which produces the higher interest. In the case of optimization multi-objective applied to phylogenetic inference, there is open source software tool, called MO-Phylogenetics, which is designed for the purpose of resolving inference problems with classic evolutionary algorithms and last generation algorithms. REFERENCES [1] C.A. Coello Coello, G.B. Lamont, D.A. van Veldhuizen. Evolutionary algorithms for solving multi-objective problems. Spring. Agosto 2007 [2] C. Zambrano-Vega, A.J. Nebro, J.F Aldana-Montes. MO-Phylogenetics: a phylogenetic inference software tool with multi-objective evolutionary metaheuristics. Methods in Ecology and Evolution. En prensa. Febrero 2016.
Resumo:
Ligand-protein docking is an optimization problem based on predicting the position of a ligand with the lowest binding energy in the active site of the receptor. Molecular docking problems are traditionally tackled with single-objective, as well as with multi-objective approaches, to minimize the binding energy. In this paper, we propose a novel multi-objective formulation that considers: the Root Mean Square Deviation (RMSD) difference in the coordinates of ligands and the binding (intermolecular) energy, as two objectives to evaluate the quality of the ligand-protein interactions. To determine the kind of Pareto front approximations that can be obtained, we have selected a set of representative multi-objective algorithms such as NSGA-II, SMPSO, GDE3, and MOEA/D. Their performances have been assessed by applying two main quality indicators intended to measure convergence and diversity of the fronts. In addition, a comparison with LGA, a reference single-objective evolutionary algorithm for molecular docking (AutoDock) is carried out. In general, SMPSO shows the best overall results in terms of energy and RMSD (value lower than 2A for successful docking results). This new multi-objective approach shows an improvement over the ligand-protein docking predictions that could be promising in in silico docking studies to select new anticancer compounds for therapeutic targets that are multidrug resistant.
Resumo:
El problema de selección de requisitos (o Next Release Problem, NRP) consiste en seleccionar el subconjunto de requisitos que se va a desarrollar en la siguiente versión de una aplicación software. Esta selección se debe hacer de tal forma que maximice la satisfacción de las partes interesadas a la vez que se minimiza el esfuerzo empleado en el desarrollo y se cumplen un conjunto de restricciones. Trabajos recientes han abordado la formulación bi-objetivo de este problema usando técnicas exactas basadas en resolutores SAT y resolutores de programación lineal entera. Ambos se enfrentan a dificultades cuando las instancias tienen un gran tamaño, sin embargo la programación lineal entera (ILP) parece ser más efectiva que los resolutores SAT. En la práctica, no es necesario calcular todas las soluciones del frente de Pareto (que pueden llegar a ser muchas) y basta con obtener un buen número de soluciones eficientes bien distribuidas en el espacio objetivo. Las estrategias de búsqueda basadas en ILP que se han utilizado en el pasado para encontrar un frente bien distribuido en cualquier instante de tiempo solo buscan soluciones soportadas. En este trabajo proponemos dos estrategias basadas en ILP que son capaces de encontrar el frente completo con suficiente tiempo y que, además, tienen la propiedad de aportar un conjunto de soluciones bien distribuido en el frente objetivo en cualquier momento de la búsqueda.