6 resultados para Ordinary Portland cement

em Repositorio Institucional de la Universidad de Málaga


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Ye’elimite based cements have been studied since 70’s years in China, due to the irrelevant characteristics from a hydraulic and environmental point of view. One of them is the reduced fuel consumption, related to the lower temperature reaction required for this kind of cement production as compared to Ordinary Portland Cement (OPC), another characteristic is the reduced requirement of carbonates as a typical raw material, compared to OPC, with the consequent reduction in CO2 releases (~22%)from combustion. Thus, Belite-Ye’elimite-Ferrite (BYF) cements have been developed as potential OPC substitutes. BYF cements contain belite as main phase (>50 wt%) and ye´elimite as the second content phase (~30 wt%). However, an important technological problem is associated to them, related to the low mechanical strengths developed at intermediate hydration ages (3, 7 and 28 days). One of the proposed solutions to this problem is the activation of BYF clinkers by preparing clinkers with high percentage of coexisting alite and ye'elimite. These clinkers are known Belite-Alite-Ye’elimite (BAY) cements. Their manufacture would produce ~15% less CO2 than OPC. Alite is the main component of OPC and is responsible for early mechanical strengths. The reaction of alite and ye´elimite with water will develop cements with high mechanical strengths at early ages, while belite will contribute to later curing times. Moreover, the high alkalinity of BAY cement pastes/mortars/concretes may facilitate the use of supplementary cementitious materials with pozzolanic activity which also contributes to decrease the CO2 footprint of these ecocements. The main objective of this work was the design and optimization of all the parameters evolved in the preparation of a BAY eco-cement that develop higher mechanical strengths than BYF cements. These parameters include the selection of the raw materials (lime, gypsum, kaolin and sand), milling, clinkering conditions (temperature, and holding time), and clinker characterization The addition of fly ash has also been studied. All BAY clinker and pastes (at different hydration ages) were mineralogically characterized through laboratory X-ray powder diffraction (LXRPD) in combination with the Rietveld methodology to obtain the full phase assemblage including Amorphous and Crystalline non-quantified, ACn, contents. The pastes were also characterized through rheological measurements, thermal analyses (TA), scanning electronic microscopy (SEM) and nuclear magnetic resonance (NMR). The compressive strengths were also measured at different hydration times and compared to BYF.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cement hydration is a very complex process in which crystalline phases are dissolving in water and after supersaturation hydrated crystalline and amorphous phases precipitate. Great efforts are being made to develop analytical tools to accurately quantify these processes and X-ray Powder Diffraction (XRPD) combined with Rietveld methodology is a suitable tool to quantify these complex mixtures and their time evolutions. However, some problems/drawbacks should be overcome to fully apply it to cement pastes characterization in order to get accurate phase analyses. In order to tackle this issue, a comparison of the Rietveld quantitative phase analyses (RQPA) obtained using Cu-Kα1, Mo-Kα1, and synchrotron strictly monochromatic radiations of three set of mixtures with increasing amounts of a given phase (spiking-method) is presented. The main aim is to test a simple hypothesis: high energy Mo-radiation, combined with high resolution laboratory X-ray powder diffraction optics, could yield more accurate RQPA, for challenging samples, than well-established Cu-radiation procedure(s). Firstly, a series of crystalline inorganic phase mixtures with increasing amounts of an analyte was studied in order to determine if Mo-Kα1 methodology is as robust as the well-established Cu-Kα1 one. Secondly, a series of crystalline organic phase mixtures with increasing amounts of an organic compound was analyzed. This type of mixture can result in transparency problems in reflection and inhomogeneous loading in narrow capillaries for transmission studies. Finally, a third series with variable amorphous content was studied. Limit of detection in Cu-patterns, ~0.2 wt%, are slightly lower than those derived from Mo-patterns, ~0.3 wt%, for similar recording times and limit of quantification for a well crystallized inorganic phase using laboratory powder diffraction was established ~0.10 wt%. From the obtained results it is inferred that RQPA from Mo-Kα1 radiation have slightly better accuracies than those obtained from Cu-Kα1. The results obtained in the previous comparison have been taken into account to obtain accurate RQPA, including the amorphous component with internal standard methodology, of hydrating cement pastes. The final goal of this second study was understanding the early-stage hydration mechanisms of a variety of cementing systems (Ordinary Portland Cement or Belite Alite Ye’elimite cement) as a function of water content, superplasticizer additives and type and content of sulfate source. In order to do so, X-ray powder diffraction data were taken in-situ with the humidity chamber coupled to the Mo-Kα1 powder diffractometer. Some results of this ongoing investigation will be reported and discussed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Calcium sulfoaluminate (CSA) cements/mortars are receiving increasing attention since their manufacture produces less CO2 than ordinary Portland cement (OPC) (up to 22% of decrease depending on its composition). These systems are complex and there are many parameters affecting their hydration mechanism, such as water-to-cement (w/c) ratio, type and amount of sulfate source, and so on. Low w/c ratios, within certain limits, may reduce the porosity and consequently, improve the mechanical strengths. However, it is accompanied by an increasing of viscosity and lack of both workability and homogeneity, with the consequent negative effect on the mechanical properties. The dispersion of the particles through the adsorption of the right amount and type of additives, such as superplasticizers, is a key point to improve the workability of mortars allowing both the preparation of homogeneous mixtures and the reduction of the amount of mixing water. This work deals with the preparation and optimization of homogeneous CSA-mortars with improved mechanical strengths. The optimum amount of superplasticizer was optimized through rheological measurements. The effect of different amounts of the superplasticizer on the viscosity of the mortars, its hydration mechanism and corresponding mechanical properties has been studied and will be discussed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Ordinary Portland cement (OPC) is an environmentally contentious material, as for every ton of OPC produced, on average, 0.97 tons of CO2 are released. Ye'elimite-rich cements are considered as eco-cements because their manufacturing process releases less CO2 into the atmosphere than OPC; this is due to the low calcite demand. Belite-Alite-Ye’elimite (BAY) cements are promising eco-friendly building materials as OPC substitutes at a large scale. The reaction of alite and ye´elimite with water should develop cements with high mechanical strengths at early ages, while belite will contribute to later curing times. However, they develop lower mechanical strengths at early-medium ages than OPC. It is known that the presence of different polymorphs of ye'elimite and belite affects the hydration due to the different reactivity of those phases. Thus, a solution to this problem may be well the activation of BAY clinkers by preparing them with 'H-belite and pseudo-cubic-ye'elimite, jointly with alite. The aim of this work is the preparation and characterization of active-BAY clinkers which contain high percentages of coexisting 'H-belite and pseudo-cubic-ye'elimite, jointly with alite to develop, in a future step, comparable mechanical strengths to OPC. The parameters evolved in the preparation of the clinker have been optimized, including the selection of raw materials (mineralizers and activators) and clinkering conditions. Finally, the clinker was characterized through laboratory X-ray powder diffraction, in combination with the Rietveld methodology, and scanning electron microscopy.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The durability of cement-based construction materials depends on the environmental conditions during their service life. A further factor is the microstructure of the cement bulk, established by formation of cement hydrates. The development of the phases and microstructure under given conditions is responsible of the high strength of cementitious materials. The investigation on the early hydration behavior of cements and cementing systems has been for a long time a very important area of research: understanding the chemical reactions that lead to hardening is fundamental for the prediction of performances and durability of the materials. The production of 1 ton of Ordinary Portland Cement, OPC, releases into the atmosphere ~0.97 tons of CO2. This implies that the overall CO2 emissions from the cement industry are 6% of all anthropogenic carbon dioxide. An alternative to reduce the CO2 footprint consists on the development of eco-cements composed by less calcite demanding phases, such as belite and ye'elimite. That is the case of Belite-Ye’elimite cements (BY). Since the reactivity of belite is not quick enough, these materials develop low mechanical strengths at intermediate hydration ages. A possible solution to this problem goes through the production of cements which jointly contain alite with the two previously mentioned phases, named as Belite-Alite-Ye’elimite (BAY) cements. The reaction of alite and ye'elimite with water will develop cements with high mechanical strengths at early ages, while belite will contribute to later values. The final goal is to understand the hydration mechanisms of a variety of cementing systems (OPC, BAY and pure phases) as a function of water content, superplasticizer additives and type and content of sulfate source. In order to do so, in-situ laboratory humidity chambers with Molybdenum X-ray Powder diffraction are employed. In the first 2h of hydration, reaction degree (α) of ye'elimite had been decreased for superplasticizer.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The main aim of this study is to apply synchrotron radiation techniques for the study of hydrated cement pastes. In particular, the tetracalcium aluminoferrite phase, C4AF in cement nomenclature, is the major iron-containing phase in Ordinary Portland Cement (OPC) and in iron rich belite calcium sulfoaluminate cements. In a first study, the hydration mechanism of pure tetracalcium aluminoferrite phase with water-to-solid ratio of 1.0 has been investigated by HR-SXRPD (high resolution synchrotron X-ray powder diffraction). C4AF in the presence of water hydrates to form mainly an iron-containing hydrogarnet-type (katoite) phase, C3A0.84F0.16H6, as single crystalline phase. Its crystal structure and stoichiometry were determined by the Rietveld method and the final disagreement factors were RWP=8.1% and RF=4.8% [1]. As the iron content in the product is lower than that in C4AF, it is assumed that part of the iron also goes to an amorphous iron rich gel, like the hydrated alumina-type gel, as hydration proceeds. Further results from the high-resolution study will be discussed. In a second study, the behavior of pure and iron-containing katoites (C3AH6 and C3A0.84F0.16H6) under pressure have been analyzed by SXRPD using a diamond anvil cell (DAC) and then their bulk moduli were determined. The role of the pressure transmitting medium (PTM) has also been studied. In this case, silicone oil as well as methanol/ethanol mixtures have been used as PTM. Some “new peaks” were detected in the pattern for C3A0.84F0.16H6 as pressure increases, when using ethanol/methanol as PTM. These new peaks were still present at ambient pressure after releasing the applied pressure. They may correspond to crystalline nordstrandite or doyleite from the crystallization of amorphous aluminium hydroxide. The results from the high-pressure study will also be discussed.