2 resultados para Mobile robotics
em Repositorio Institucional de la Universidad de Málaga
Resumo:
This paper reviews current research works at the authors’ Institutions to illustrate how mobile robotics and related technologies can be used to enhance economical fruition, control, protection and social impact of the cultural heritage. Robots allow experiencing on-line, from remote locations, tours at museums, archaeological areas and monuments. These solutions avoid travelling costs, increase beyond actual limits the number of simultaneous visitors, and prevent possible damages that can arise by over-exploitation of fragile environments. The same tools can be used for exploration and monitoring of cultural artifacts located in difficult to reach or dangerous areas. Examples are provided by the use of underwater robots in the exploration of deeply submerged archaeological areas. Besides, technologies commonly employed in robotics can be used to help exploring, monitoring and preserving cultural artifacts. Examples are provided by the development of procedures for data acquisition and mapping and by object recognition and monitoring algorithms.
Resumo:
Most approaches to stereo visual odometry reconstruct the motion based on the tracking of point features along a sequence of images. However, in low-textured scenes it is often difficult to encounter a large set of point features, or it may happen that they are not well distributed over the image, so that the behavior of these algorithms deteriorates. This paper proposes a probabilistic approach to stereo visual odometry based on the combination of both point and line segment that works robustly in a wide variety of scenarios. The camera motion is recovered through non-linear minimization of the projection errors of both point and line segment features. In order to effectively combine both types of features, their associated errors are weighted according to their covariance matrices, computed from the propagation of Gaussian distribution errors in the sensor measurements. The method, of course, is computationally more expensive that using only one type of feature, but still can run in real-time on a standard computer and provides interesting advantages, including a straightforward integration into any probabilistic framework commonly employed in mobile robotics.