2 resultados para Micro-structural characterization

em Repositorio Institucional de la Universidad de Málaga


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Crystalline metal phosphonates may offer acidic sites, structural flexibility and guest molecules (H2O, heterocyclics, etc.) which can act as proton carriers. In addition, some frameworks are also amenable for post‐synthesis modifications in order to enhance desired properties [1,2]. In this work, we present the synthesis and structural characterization of two hydroxyphosphonoacetates hybrids based on magnesium, [Mg5(O3PCHOHCOO)2(HO3PCHOHCOO)2·8H2O] [Mg5(HPAA)2(H1HPAA)2·8H2O], and zinc, [Zn6K(O3PCHOHCOO)4(OH)·6.5H2O] [Zn6K(HPAA)4(OH)·6.5H2O]. Both solids present three-dimensional frameworks and their crystal structures were solved ab initio from X-ray powder diffraction. The proton conductivity of [Zn6K(HPAA)4(OH)·6.5H2O] as well as ammonia derivatives of M(II)(HO3PCHOHCOO)·2H2O [M(II)=Zn, Mg] will be reported and discussed.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Metal phosphonates are multifunctional solids with tunable properties, such as internal H-bond networks, and high chemical and thermal stability [1]. In the present work, we describe the synthesis, structural characterization, luminescent properties and proton conduction performance of a new family of isostructural cationic compounds with general formula [Ln(H4NMP)(H2O)2]Cl·2H2O [Ln = La3+, Pr3+, Sm3+, Gd3+, Tb3+, Dy3+, Ho3+, H6NMP = nitrilotris(methylphosphonic acid)]. These solids are formed by positively charge layers, which consist of isolated LnO8 polyhedra and bridge chelating NMP2- ligands, held apart by chloride ions and water molecules. This arrangement result in extended interlayer hydrogen networks with possible proton transfer pathways. The proton conductivity of Gd3+ sample, selected as prototype of the series, was measured. In the range between range 25º and 80 ºC, the conductivity increase with the temperature up to a maximum value of 3.10-4 S·cm-1, at relative humidity of 95 %. The activation energy obtained from the Arrhenius plot (Figure 1) is in the range corresponding to a Grotthuss transfer mechanism.