1 resultado para MEDICAL IMAGING
em Repositorio Institucional de la Universidad de Málaga
Filtro por publicador
- ABACUS. Repositorio de Producción Científica - Universidad Europea (1)
- Aberdeen University (4)
- AMS Tesi di Dottorato - Alm@DL - Università di Bologna (5)
- AMS Tesi di Laurea - Alm@DL - Università di Bologna (4)
- Applied Math and Science Education Repository - Washington - USA (1)
- ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha (5)
- Aston University Research Archive (4)
- Biblioteca de Teses e Dissertações da USP (2)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (63)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP) (248)
- Biblioteca Virtual del Sistema Sanitario Público de Andalucía (BV-SSPA), Junta de Andalucía. Consejería de Salud y Bienestar Social, Spain (2)
- Bioline International (1)
- BORIS: Bern Open Repository and Information System - Berna - Suiça (69)
- Bucknell University Digital Commons - Pensilvania - USA (1)
- Bulgarian Digital Mathematics Library at IMI-BAS (1)
- CentAUR: Central Archive University of Reading - UK (9)
- CiencIPCA - Instituto Politécnico do Cávado e do Ave, Portugal (6)
- Cochin University of Science & Technology (CUSAT), India (9)
- Collection Of Biostatistics Research Archive (1)
- Comissão Econômica para a América Latina e o Caribe (CEPAL) (1)
- Consorci de Serveis Universitaris de Catalunya (CSUC), Spain (10)
- CORA - Cork Open Research Archive - University College Cork - Ireland (2)
- Digital Commons at Florida International University (7)
- DigitalCommons@The Texas Medical Center (32)
- DigitalCommons@University of Nebraska - Lincoln (1)
- Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland (4)
- DRUM (Digital Repository at the University of Maryland) (1)
- Duke University (23)
- Glasgow Theses Service (1)
- Instituto Politécnico de Leiria (2)
- Instituto Politécnico do Porto, Portugal (22)
- Massachusetts Institute of Technology (1)
- National Center for Biotechnology Information - NCBI (2)
- Nottingham eTheses (1)
- QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast (1)
- ReCiL - Repositório Científico Lusófona - Grupo Lusófona, Portugal (2)
- Repositório Científico da Universidade de Évora - Portugal (1)
- Repositório Científico do Instituto Politécnico de Lisboa - Portugal (48)
- Repositório da Produção Científica e Intelectual da Unicamp (20)
- Repositório Institucional da Universidade de Aveiro - Portugal (2)
- Repositorio Institucional de la Universidad de Málaga (1)
- Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho" (14)
- RUN (Repositório da Universidade Nova de Lisboa) - FCT (Faculdade de Cienecias e Technologia), Universidade Nova de Lisboa (UNL), Portugal (8)
- Savoirs UdeS : plateforme de diffusion de la production intellectuelle de l’Université de Sherbrooke - Canada (2)
- Scielo Saúde Pública - SP (26)
- Scientific Open-access Literature Archive and Repository (1)
- Universidad del Rosario, Colombia (1)
- Universidad Politécnica de Madrid (11)
- Universidade Complutense de Madrid (1)
- Universidade do Minho (5)
- Universidade Federal do Rio Grande do Norte (UFRN) (2)
- Universita di Parma (1)
- Universitat de Girona, Spain (2)
- Universitätsbibliothek Kassel, Universität Kassel, Germany (1)
- Université de Lausanne, Switzerland (57)
- Université de Montréal (1)
- Université de Montréal, Canada (16)
- University of Canberra Research Repository - Australia (1)
- University of Queensland eSpace - Australia (212)
- University of Washington (2)
- WestminsterResearch - UK (2)
Resumo:
Abstract: Medical image processing in general and brain image processing in particular are computationally intensive tasks. Luckily, their use can be liberalized by means of techniques such as GPU programming. In this article we study NiftyReg, a brain image processing library with a GPU implementation using CUDA, and analyse different possible ways of further optimising the existing codes. We will focus on fully using the memory hierarchy and on exploiting the computational power of the CPU. The ideas that lead us towards the different attempts to change and optimize the code will be shown as hypotheses, which we will then test empirically using the results obtained from running the application. Finally, for each set of related optimizations we will study the validity of the obtained results in terms of both performance and the accuracy of the resulting images.