1 resultado para Learning support
em Repositorio Institucional de la Universidad de Málaga
Filtro por publicador
- JISC Information Environment Repository (6)
- Repository Napier (5)
- Abertay Research Collections - Abertay University’s repository (1)
- Aberystwyth University Repository - Reino Unido (6)
- Aquatic Commons (3)
- Aston University Research Archive (13)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (3)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP) (3)
- BORIS: Bern Open Repository and Information System - Berna - Suiça (4)
- Boston University Digital Common (7)
- Brock University, Canada (28)
- Bulgarian Digital Mathematics Library at IMI-BAS (4)
- Cambridge University Engineering Department Publications Database (5)
- CentAUR: Central Archive University of Reading - UK (31)
- Chinese Academy of Sciences Institutional Repositories Grid Portal (2)
- Cochin University of Science & Technology (CUSAT), India (3)
- CORA - Cork Open Research Archive - University College Cork - Ireland (6)
- Dalarna University College Electronic Archive (8)
- Digital Commons @ Winthrop University (1)
- Digital Commons at Florida International University (4)
- Digital Peer Publishing (4)
- Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland (1)
- DRUM (Digital Repository at the University of Maryland) (1)
- Duke University (2)
- eResearch Archive - Queensland Department of Agriculture; Fisheries and Forestry (1)
- Fachlicher Dokumentenserver Paedagogik/Erziehungswissenschaften (1)
- Funes: Repositorio digital de documentos en Educación Matemática - Colombia (1)
- Greenwich Academic Literature Archive - UK (14)
- Helda - Digital Repository of University of Helsinki (6)
- Indian Institute of Science - Bangalore - Índia (18)
- Instituto Politécnico do Porto, Portugal (8)
- Massachusetts Institute of Technology (6)
- Memoria Académica - FaHCE, UNLP - Argentina (3)
- Ministerio de Cultura, Spain (4)
- Open Access Repository of Association for Learning Technology (ALT) (1)
- Open University Netherlands (3)
- Portal de Revistas Científicas Complutenses - Espanha (2)
- QSpace: Queen's University - Canada (2)
- QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast (47)
- Queensland University of Technology - ePrints Archive (534)
- RDBU - Repositório Digital da Biblioteca da Unisinos (1)
- ReCiL - Repositório Científico Lusófona - Grupo Lusófona, Portugal (1)
- Repositório Científico da Universidade de Évora - Portugal (1)
- Repositório Digital da UNIVERSIDADE DA MADEIRA - Portugal (1)
- Repositório Institucional da Universidade de Aveiro - Portugal (1)
- Repositorio Institucional de la Universidad de Málaga (1)
- Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho" (6)
- Research Open Access Repository of the University of East London. (1)
- Royal College of Art Research Repository - Uninet Kingdom (1)
- RUN (Repositório da Universidade Nova de Lisboa) - FCT (Faculdade de Cienecias e Technologia), Universidade Nova de Lisboa (UNL), Portugal (1)
- Scielo España (1)
- Universidad de Alicante (1)
- Universidad del Rosario, Colombia (1)
- Universidad Politécnica de Madrid (2)
- Universidade de Lisboa - Repositório Aberto (4)
- Universidade Federal do Rio Grande do Norte (UFRN) (1)
- Universitat de Girona, Spain (5)
- Université de Lausanne, Switzerland (2)
- Université de Montréal, Canada (5)
- University of Canberra Research Repository - Australia (1)
- University of Queensland eSpace - Australia (10)
- University of Southampton, United Kingdom (14)
- WestminsterResearch - UK (4)
- Worcester Research and Publications - Worcester Research and Publications - UK (4)
Resumo:
Computational intelligent support for decision making is becoming increasingly popular and essential among medical professionals. Also, with the modern medical devices being capable to communicate with ICT, created models can easily find practical translation into software. Machine learning solutions for medicine range from the robust but opaque paradigms of support vector machines and neural networks to the also performant, yet more comprehensible, decision trees and rule-based models. So how can such different techniques be combined such that the professional obtains the whole spectrum of their particular advantages? The presented approaches have been conceived for various medical problems, while permanently bearing in mind the balance between good accuracy and understandable interpretation of the decision in order to truly establish a trustworthy ‘artificial’ second opinion for the medical expert.