2 resultados para León X, Papa, 1475-1521-Retratos-Grabado

em Repositorio Institucional de la Universidad de Málaga


Relevância:

30.00% 30.00%

Publicador:

Resumo:

X-Ray Powder Diffraction (XRPD) laboratory is a facility placed at Servicios Centrales de apoyo a la Investigación (SCAI) at University of Malaga (UMA) http://www.scai.uma.es/. This facility has three XRPD diffractometers and a diffractometer to measure high-resolution thin-films. X´Pert PRO MPD from PANalytical. This is a bragg-brentano (theta/2theta) with reflection geometry diffractometer which allows to obtain high resolution XRPD data with strictly monochromatic CuKα1 radiation (λ=1.54059Å) [Ge(111) primary monochromator] and an automatic sample charger. Moreover, it has parallel monochromatic CuKα1 radiation (λ=1.54059Å) with an hybrid Ge(220) monochromator for capillary and multiproposal (bulk samples up to 1 Kg) sample holders. The HTK1200N chamber from Anton Paar allows collecting high resolution high temperature patterns. EMPYREAN from PANalytical. This diffractometer works in reflection and transmission geometries with theta/theta goniometer, using CuKα1,2 radiation (λ=1.5418Å), a focusing X-ray mirror and a ultra-fast PIXCEL 3D detector with 1D and 2D collection data modes (microstructural and preferred orientation analysis). Moreover, the TTK450N chamber allows low temperature and up to 450ºC studies. A D8 ADVANCE (BRUKER) was installed in April 2014. It is the first diffractometer in Europe equipped with a Johansson Ge(111) primary monochromator, which gives a strictly monochromatic Mo radiation (λ=0.7093 Å) [1]. It works in transmission mode (with a sample charger) with this high resolution configuration. XRPD data suitable for PDF (Pair Distribution Function) analysis can be collected with a capillary sample holder, due to the high energy and high resolution capabilities of this diffractometer. Moreover, it has a humidity chamber MHC-trans from Anton Paar working on transmission mode with MoKα1 (measurements can be collected at 5 to 95% of relative humidity (from 20 to 80 ºC) and up to 150ºC [2]). Furthermore, this diffractometer also has a reaction chamber XRK900 from Anton Paar (which uses CuKα1,2 radiation in reflection mode), which allows data collection from room temperature to 900ºC with up to 10 bar of different gases. Finally, a D8 DISVOVER A25 from BRUKER was installed on December 2014. It has a five axis Euler cradler and optics devices suitable for high resolution thin film data collection collected in in-plane and out-of-plane modes. To sum up, high-resolution thin films, microstructural, rocking-curve, Small Angle X-ray Scattering (SAXS), Grazing incident SAXS (GISAXS), Ultra Grazing incident diffraction (Ultra-GID) and microdiffraction measurements can be performed with the appropriated optics and sample holders. [1] L. León-Reina, M. García-Maté, G. Álvarez-Pinazo, I. Santacruz, O. Vallcorba, A.G. De la Torre, M.A.G. Aranda “Accuracy in Rietveld quantitative phase analysis: a comparative study of strictly monochromatic Mo and Cu radiations” J. Appl. Crystallogr. 2016, 49, 722-735. [2] J. Aríñez-Soriano, J. Albalad, C. Vila-Parrondo, J. Pérez-Carvajal, S. Rodríguez-Hermida, A. Cabeza, F. Busqué, J. Juanhuix, I. Imaz, Daniel Maspoch “Single-crystal and humidity-controlled powder diffraction study of the breathing effect in a metal-organic framework upon water adsorption/desorption” Chem. Commun., 2016, DOI: 10.1039/C6CC02908F.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The durability of cement-based construction materials depends on the environmental conditions during their service life. A further factor is the microstructure of the cement bulk, established by formation of cement hydrates. The development of the phases and microstructure under given conditions is responsible of the high strength of cementitious materials. The investigation on the early hydration behavior of cements and cementing systems has been for a long time a very important area of research: understanding the chemical reactions that lead to hardening is fundamental for the prediction of performances and durability of the materials. The production of 1 ton of Ordinary Portland Cement, OPC, releases into the atmosphere ~0.97 tons of CO2. This implies that the overall CO2 emissions from the cement industry are 6% of all anthropogenic carbon dioxide. An alternative to reduce the CO2 footprint consists on the development of eco-cements composed by less calcite demanding phases, such as belite and ye'elimite. That is the case of Belite-Ye’elimite cements (BY). Since the reactivity of belite is not quick enough, these materials develop low mechanical strengths at intermediate hydration ages. A possible solution to this problem goes through the production of cements which jointly contain alite with the two previously mentioned phases, named as Belite-Alite-Ye’elimite (BAY) cements. The reaction of alite and ye'elimite with water will develop cements with high mechanical strengths at early ages, while belite will contribute to later values. The final goal is to understand the hydration mechanisms of a variety of cementing systems (OPC, BAY and pure phases) as a function of water content, superplasticizer additives and type and content of sulfate source. In order to do so, in-situ laboratory humidity chambers with Molybdenum X-ray Powder diffraction are employed. In the first 2h of hydration, reaction degree (α) of ye'elimite had been decreased for superplasticizer.