2 resultados para Lanthanide ions

em Repositorio Institucional de la Universidad de Málaga


Relevância:

70.00% 70.00%

Publicador:

Resumo:

Crystalline acid-functionalized metal phosphonates are potential candidates as proton conducting electrolytes. Their frameworks can be chemically modified to contain proton carriers such as acidic groups (P-OH; -SO3H, -COOH,…) and guest molecules (H2O, NH3,…) that generates hydrogen bond networks stable in a wide range of temperature [1,2]. In this work, focus is laid on properties derived from the combination of lanthanide ions with the amino-sulfophosphonate ligand (H2O3PCH2)2-N-(CH2)2-SO3H. Hightrough-put screening was followed to reach the optimal synthesis conditions under solvothermal conditions at 140 ºC. Isolated polycrystalline solids, Ln[(O3PCH2)2-NH-(CH2)2-SO3H].2H2O (Ln= La, Pr and Sm), crystallize in the monoclinic (La) and orthorhombic (Pr and Sm) systems with unit cell volume of ~2548 Å3. Preliminary proton conductivity measurements for Sm derivative have been carried out between 25º and 80 ºC at relative humidity (RH) values of 70 % and 95 %. The sample exhibits enhanced conductivity at high RH and T (Figure 1) and constant activation energies of 0.4 eV, typical of a Grothuss mechanism of proton.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Metal phosphonates are multifunctional solids with tunable properties, such as internal H-bond networks, and high chemical and thermal stability [1]. In the present work, we describe the synthesis, structural characterization, luminescent properties and proton conduction performance of a new family of isostructural cationic compounds with general formula [Ln(H4NMP)(H2O)2]Cl·2H2O [Ln = La3+, Pr3+, Sm3+, Gd3+, Tb3+, Dy3+, Ho3+, H6NMP = nitrilotris(methylphosphonic acid)]. These solids are formed by positively charge layers, which consist of isolated LnO8 polyhedra and bridge chelating NMP2- ligands, held apart by chloride ions and water molecules. This arrangement result in extended interlayer hydrogen networks with possible proton transfer pathways. The proton conductivity of Gd3+ sample, selected as prototype of the series, was measured. In the range between range 25º and 80 ºC, the conductivity increase with the temperature up to a maximum value of 3.10-4 S·cm-1, at relative humidity of 95 %. The activation energy obtained from the Arrhenius plot (Figure 1) is in the range corresponding to a Grotthuss transfer mechanism.