2 resultados para Induced vibration test

em Repositorio Institucional de la Universidad de Málaga


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Stress serves as an adaptive mechanism and helps organisms to cope with life-threatening situations. However, individual vulnerability to stress and dysregulation of this system may precipitate stress-related disorders such as depression. The neurobiological circuitry in charge of dealing with stressors has been widely studied in animal models. Recently our group has demonstrated a role for lysophosphatidic acid (LPA) through the LPA1 receptor in vulnerability to stress, in particular the lack of this receptor relates to robust decrease of adult hippocampal neurogenesis and induction of anxious and depressive states. Nevertheless, the specific abnormalities in the limbic circuit in reaction to stress remains unclear. The aim of this study is to examine the differences in the brain activation pattern in the presence or absence of LPA1 receptor after acute stress. For this purpose, we have studied the response of maLPA1-null male mice and normal wild type mice to an intense stressor: Tail Suspension Test. Activation induced by behaviour of brain regions involved in mood regulation was analysed by stereological quantification of c-Fos immunoreactive positive cells. We also conducted multidimensional scaling analysis in order to unravel coativation between structures. Our results revealed hyperactivity of stress-related structures such as amygdala and paraventricular nucleus of the hypothalamus in the knockout model and different patterns of coactivation in both genotypes using a multidimensional map. This data provides further evidence to the engagement of the LPA1 receptors in stress regulation and sheds light on different neural pathways under normal and vulnerability conditions that can lead to mood disorders.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Galanin and Galanin (1-15) [GAL(1-15)] are implicated in anxiety- and depression related behaviors. Moreover, Galanin modulates 5-HT1A receptor (5-HT1AR) function at autorreceptor and postsynaptic level in the brain. In this study, we have analysed the ability of GAL(1-15) to modulate the effects of the 8-OH-DPAT agonist in the Forced Swimming Test (FST). Groups of rats were assessed in the FST. In the first set of experiments, to evaluate the interactions of 8-OH-DPAT and GAL(1-15), rats received subcutaneously (s.c) the effective doses of 8-OH-DPAT (0.25mg/Kg) 60min before the test and intracerebroventricularly (icv) GAL(1-15)1nmol 15min before the tests alone or in combination. In the second set of experiments, groups of rats received s.c. 8-OH-DPAT (0.125mg/Kg), icv GAL(1-15) 1nmol and icv the GALR2 antagonist M871 3 nmol alone or in combination. The locomotor activity was analysed in the open field test. GAL(1-15) 1nmol enhanced the antidepressant-like effects mediated by the effective dose of the 8-OH-DPAT. GAL(1-15) significantly decreased the immobility (p<0.05) and climbing (p<0.05) and increased the swimming (p<0.01) behaviour induced by an effective dose of 8-OH-DPAT (0.25mg/Kg) in FST. Moreover, after coadministration of GAL(1-15) and threshold dose of 8-OH-DPAT (0.125mg/Kg) a significant decreased appeared in immobility (p<0.01) and climbing (p<0.01) and increased the swimming behavior (p<0.001) vs 8-OH-DPAT group. Moreover, M871 blocked completely this interaction. These results indicate that GAL(1-15) enhances the antidepressant effects induced by 8-OH-DPAT in the FST. These findings may give the basis for the development of novel therapeutic drugs. This study was supported by Junta de Andalucía CVI6476.