1 resultado para GRAPHITE SURFACE
em Repositorio Institucional de la Universidad de Málaga
Resumo:
Graphene-based nanomaterials are a kind of new technological materials with high interest for physicists, chemists and materials scientists. Graphene is a two-dimensional (2-D) sheet of carbon atoms in a hexagonal configuration with atoms bonded by sp2 bonds. These bonds and this electron configuration provides the extraordinary properties of graphene, such as very large surface area, a tunable band gap, high mechanical strength and high elasticity and thermal conductivity [1]. Graphene has also been investigated for preparation of composites with various semiconductors like TiO2, ZnO, CdS aiming at enhanced photocatalytic activity for their use for photochemical reaction as water splitting or CO2 to methanol conversion [2-3]. In this communication, the synthesis of porous graphene@TiO2 obtained from a powder graphite recycled, supplied by ECOPIBA, is presented. This graphite was exfoliated, using a nonionic surfactant (Triton X-100) and sonication. Titanium(IV) isopropoxide was used as TiO2 source. After removing the surfactant with a solution HCl/n-propanol, a porous solid is obtained with a specific area of 358 m2g-1. The solid was characterized by XRD, FTIR, XPS, EDX and TEM. Figure 1 shows the graphene 2D layer bonded with nanoparticles of TiO2. When a water suspension of this material is exposed with UV-vis radiation, water splitting reaction is carried out and H2/O2 bubbles are observed (Figure 2)