2 resultados para Fluorescence probes

em Repositorio Institucional de la Universidad de Málaga


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Background: At the end of 80s, cloning technologies with the increase of the antibodies’ sensibility made easier the development of technologies based on Fluorescence in situ Hibridation (FISH). Nowadays, It’s widely used in the field of basic investigation as much as clinic diagnostic. Method: FISH is a technique that combines molecular biology with histochemistry way to detect specific nucleotide sequences so that chromosome’s section or even whole chromosome can be marked on metaphases cells (cell in division) and on attached cellular nucleus. This detection is realized using DNA fluorescence probes (marked with fluorophores), that can be different according to the structures manage to detect: large single-locus probes, small unique-sequence probes, chromosome- or region-specific “paints” or repetitive sequence probes and genomic DNA probes. Some of the applications of this technique is that can be so useful in the detection of numerical and structural chromosomal alterations such as polyploidies or genomic rearrangement, to mapping metaphases cells and even to detect bacteria or another type of microorganism. In addition, FISH allows us to monitoring diseases (antitumor therapies, quantification of genomic altered cells…) and the precise location of chromosomic broken spots on tumor searching for new genes involved in cancer and detect and map interested known genes. Conclusion: FISH has many advantages ahead of conventional cytogenetic techniques (bands G karyotype) overall at the time of establish a clinic diagnostic to detect tumors and chromosomic aberration, presenting a higher sensibility and specificity as well as being a relative quick technique (24 hours).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fluorescent probes are essential tools for studying biological systems. The last decade has witnessed particular interest in the development of two-photon excitable probes, due to their advantageous features in tissue imaging compared to the corresponding one-photon probes [1]. Recently, we have designed and synthetized an aminonaphthalimide–BODIPY derivative as energy transfer cassettes and were found to show very fast and efficient BODIPY fluorescence sensitization [2]. This was observed upon one- and two-photon excitation, which extends the application range of the investigated bichromophoric dyads in terms of accessible excitation wavelengths. In order to increase the two-photon absorption of the system aminonaphthalimide fluorophore was replace with a Prodan analog (BODIPY dyad 1), which presents found a variety of applications as probes and labels in biology [3]. The two-photon absorption cross-section  of the dyads is significantly incremented by the presence of the 6-acetyl-2-naphthylamine donor group. The emission maximum of a BODIPY fluorophore can significantly be red-shifted in comparison to their precursors by conjugation with aromatic aldehydes. [4] We use a synthetic strategy to obtain BODIPY dyad 2 that incorporates an imidazole ring. This molecule can be used in biological media as a near-neutral pH indicator based on one- and two-photon excitable BODIPY acceptor.