2 resultados para Ethanol-dehydration
em Repositorio Institucional de la Universidad de Málaga
Resumo:
The valorization of glycerol has been widely studied notably due to the oversupply of the latter from biodiesel production. Among the different upgrading reactions, dehydration to acrolein is of high interest due to the importance of acrolein as an intermediate for polymer industry (via acrylic acid) and for feed additive (synthon for DL-methionine). It is known that acrolein can be obtained by glycerol catalytic dehydration over acid catalysts. Zeolites and heteropolyacid catalysts are initially highly active, but deactivate rapidly with time on stream by coking, whilst mixed metal oxides are more stable catalytic systems but less selective and in addition they require an activation period. In this talk, the strategy we followed is described. It consisted in a parallel approach in which we developed supported heteropolyacid-based catalysts with increased stability and acrolein selectivity by using a ZrO2-grafted SBA-15 playing the role of the support for silico-tungstic acid active phase, as well as a new concept based on a two zones fluidized bed reactor (TZFBR) to tackle the unavoidable deactivation issue of the HPA catalysts. This type of reactor comprises – in one single capacity – reaction and regeneration zones. In the second part of the lecture the REALCAT platform was introduced. REALCAT (French acronym standing for ‘Advanced High-Throughput Technologies Platform for Biorefineries Catalysts Design’) is an highly integrated platform devoted to the acceleration of innovation in all the fields of industrial catalysis with an emphasis on emergent biorefinery catalytic processes. In this extremely competitive field, REALCAT consists in a versatile High-Throughput Technologies (HTT) platform devoted to innovation in heterogeneous, homogeneous or biocatalysts AND their combinations under the ultra-efficient very novel concept of hybrid catalysis.
Resumo:
Biomass is the world’s most important renewable carbon source, whose major component, carbohydrates, can be valorized by transformation into biofuels and high value-added chemicals. Among the latter, 5-hydroxymethylfurfural (HMF), obtained by C6 carbohydrates dehydration, is a versatile and key intermediate for the production of a large spectrum of biobased chemicals. Different catalytic systems have been evaluated for HMF production, mostly based on heterogeneous catalysis as alternative to the use of conventional mineral acids [1]. Moreover, niobium oxide has shown interesting properties as acid catalyst for dehydration of sugars [2-3]. On the other hand, the high surface area and large pore size of mesoporous solids make them suitable for many catalytic processes. In the present work, the dehydration of glucose to HMF has been evaluated by using different mesoporous mixed Nb2O5-ZrO2 in a biphasic water–Methyl Isobutyl Ketone (MIBK) solvent system to avoid the HMF degradation. Different experimental parameters, such as reaction temperature and time, as well as the addition of CaCl2 have been studied in order to maximize the HMF yield.N2 adsorption-desorption isotherms have corroborated the mesostructured character of catalysts, being all isotherms of Type IV according to the IUPAC classification. BET surface area decreases for catalysts with higher Zr content (Table 1). Likewise, pore volume and average pore diameter values diminish after Zr incorporation. Concerning the acid properties, a clear correlation between Nb and acidity can be observed, in such a way that total acidity, as deduced from NH3-TPD, decreases when the Zr content rises, and consequently the amount of Nb is reduced.These mesoporous Nb-Zr catalysts have been tested in the dehydration of glucose to HMF at 175 ºC under batch operation in aqueous solution, using MIBK as co-solvent. It can be observed that both glucose conversion and HMF yield increase with the Nb content, being maximum (90% and 36%, respectively) after 90 minutes for Nb2O5. This trend changes when CaCl2 is added to the reaction medium, improving the catalytic performance of mixed oxides and ZrO2, but Nb2O5 maintains similar results than without salt addition. This could be justified by the interaction between CaCl2 and Lewis acid sites, since zirconium oxide possesses a higher amount of this acid sites type.