2 resultados para ELECTRONIC-STRUCTURE CALCULATIONS

em Repositorio Institucional de la Universidad de Málaga


Relevância:

100.00% 100.00%

Publicador:

Resumo:

In the last three decades, there has been a broad academic and industrial interest in conjugated polymers as semiconducting materials for organic electronics. Their applications in polymer light-emitting diodes (PLEDs), polymer solar cells (PSCs), and organic field-effect transistors (OFETs) offer opportunities for the resolution of energy issues as well as the development of display and information technologies1. Conjugated polymers provide several advantages including low cost, light weight, good flexibility, as well as solubility which make them readily processed and easily printed, removing the conventional photolithography for patterning2. A large library of polymer semiconductors have been synthesized and investigated with different building blocks, such as acenes or thiophene and derivatives, which have been employed to design new materials according to individual demands for specific applications. To design ideal conjugated polymers for specific applications, some general principles should be taken into account, including (i) side chains (ii) molecular weights, (iii) band gap and HOMO and LUMO energy levels, and (iv) suited morphology.3-6 The aim of this study is to elucidate the impact that substitution exerts on the molecular and electronic structure of π-conjugated polymers with outstanding performances in organic electronic devices. Different configurations of the π-conjugated backbones are analyzed: (i) donor-acceptor configuration, (ii) 1D lineal or 2D branched conjugated backbones, and (iii) encapsulated polymers (see Figure 1). Our combined vibrational spectroscopy and DFT study shows that small changes in the substitution pattern and in the molecular configuration have a strong impact on the electronic characteristics of these polymers. We hope this study can advance useful structure-property relationships of conjugated polymers and guide the design of new materials for organic electronic applications.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Oligophenylenes (polyphenylenes) are constituted by an array of conjugated benzenes where inter-ring electron delocalization tends to extend over the whole chain (linear conjugation) being intrinsically limited, among other factors, by terminal effects. Alternatively, cyclic conjugation is envisaged as the unlimited free-boundary versionofconjugation which will impact the structure of molecules in rather unknown ways. The cyclic version of oligophenylenes, cycloparaphenylenes ([n]CPPs with n the number of phenyl rings) were first synthesized in 2008 by Beztozzi and Jasti.1 Today the whole [n]CPP series from [5]CPP to [18]CPP has been prepared. [n]CPPs represent ideal models to investigate new insights of the electronic structure of molecules and cyclic conjugation when electrons or charges circulate in a closed circuit without boundaries. Radical cations and dications of [n]CPP from n=5 to n=12 have been prepared and studied by Raman spectroscopy.2 Small [n]CPP dications own their stability to the closed-shell electronic configuration imposed by cyclic conjugation. However, in large [n]CPP dications cyclic conjugation is minimal and these divalent species form open-shell biradicals. The Raman spectra reflect the effect of cyclic conjugation in competition with cyclic strain and biradicaloid aromatic stabilization. Cyclic conjugation provokes the existence of a turning point or V-shape behavior of the frequencies of the G bands as a function of n. In this communication we will show the vibrational spectroscopic fingerprint of this rare form of conjugation. [1] R. Jasti, J. Bhattacharjee, J. B. Neaton, C. R. Bertozzi, “Synthesis, Characterization, and Theory of [9]-, [12]-, and [18]Cycloparaphenylene: Carbon Nanohoop Structures”, J. Am. Chem. Soc. 130 (2008), 17646–17647. [2] M. P. Alvarez, P. M. Burrezo, M. Kertesz, T. Iwamoto, S. Yamago, J. Xia, R. Jasti, J. T. L. Navarrete, M. Taravillo, V. G. Baonza, J. Casado, “Properties of Sizeable [n]CycloParaPhenylenes As Molecular Models of Single-Wall Carbon Nanotubes By Raman Spectroscopy: Structural and Electron-Transfer Responses Under Mechanical Stress”, Angew. Chem. Int. Ed. 53, (2014), 7033−7037.