2 resultados para Durability.

em Repositorio Institucional de la Universidad de Málaga


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The durability of cement-based construction materials depends on the environmental conditions during their service life. A further factor is the microstructure of the cement bulk, established by formation of cement hydrates. The development of the phases and microstructure under given conditions is responsible of the high strength of cementitious materials. The investigation on the early hydration behavior of cements and cementing systems has been for a long time a very important area of research: understanding the chemical reactions that lead to hardening is fundamental for the prediction of performances and durability of the materials. The production of 1 ton of Ordinary Portland Cement, OPC, releases into the atmosphere ~0.97 tons of CO2. This implies that the overall CO2 emissions from the cement industry are 6% of all anthropogenic carbon dioxide. An alternative to reduce the CO2 footprint consists on the development of eco-cements composed by less calcite demanding phases, such as belite and ye'elimite. That is the case of Belite-Ye’elimite cements (BY). Since the reactivity of belite is not quick enough, these materials develop low mechanical strengths at intermediate hydration ages. A possible solution to this problem goes through the production of cements which jointly contain alite with the two previously mentioned phases, named as Belite-Alite-Ye’elimite (BAY) cements. The reaction of alite and ye'elimite with water will develop cements with high mechanical strengths at early ages, while belite will contribute to later values. The final goal is to understand the hydration mechanisms of a variety of cementing systems (OPC, BAY and pure phases) as a function of water content, superplasticizer additives and type and content of sulfate source. In order to do so, in-situ laboratory humidity chambers with Molybdenum X-ray Powder diffraction are employed. In the first 2h of hydration, reaction degree (α) of ye'elimite had been decreased for superplasticizer.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Hardware vendors make an important effort creating low-power CPUs that keep battery duration and durability above acceptable levels. In order to achieve this goal and provide good performance-energy for a wide variety of applications, ARM designed the big.LITTLE architecture. This heterogeneous multi-core architecture features two different types of cores: big cores oriented to performance and little cores, slower and aimed to save energy consumption. As all the cores have access to the same memory, multi-threaded applications must resort to some mutual exclusion mechanism to coordinate the access to shared data by the concurrent threads. Transactional Memory (TM) represents an optimistic approach for shared-memory synchronization. To take full advantage of the features offered by software TM, but also benefit from the characteristics of the heterogeneous big.LITTLE architectures, our focus is to propose TM solutions that take into account the power/performance requirements of the application and what it is offered by the architecture. In order to understand the current state-of-the-art and obtain useful information for future power-aware software TM solutions, we have performed an analysis of a popular TM library running on top of an ARM big.LITTLE processor. Experiments show, in general, better scalability for the LITTLE cores for most of the applications except for one, which requires the computing performance that the big cores offer.