2 resultados para Distributed model predictive control
em Repositorio Institucional de la Universidad de Málaga
Resumo:
The horticultural sector has become an increasingly important sector of food production, for which greenhouse climate control plays a vital role in improving its sustainability. One of the methods to control the greenhouse climate is Model Predictive Control, which can be optimized through a branch and bound algorithm. The application of the algorithm in literature is examined and analyzed through small examples, and later extended to greenhouse climate simulation. A comparison is made of various alternative objective functions available in literature. Subsequently, a modidified version of the B&B algorithm is presented, which reduces the number of node evaluations required for optimization. Finally, three alternative algorithms are developed and compared to consider the optimization problem from a discrete to a continuous control space.
Resumo:
Performance and scalability of model transformations are becoming prominent topics in Model-Driven Engineering. In previous works we introduced LinTra, a platform for executing model transformations in parallel. LinTra is based on the Linda model of a coordination language and is intended to be used as a middleware where high-level model transformation languages are compiled. In this paper we present the initial results of our analyses on the scalability of out-place model-to-model transformation executions in LinTra when the models and the processing elements are distributed over a set of machines.