3 resultados para CpGV resistance baculovirus whole genome sequencing
em Repositorio Institucional de la Universidad de Málaga
Resumo:
The quality and the speed for genome sequencing has advanced at the same time that technology boundaries are stretched. This advancement has been divided so far in three generations. The first-generation methods enabled sequencing of clonal DNA populations. The second-generation massively increased throughput by parallelizing many reactions while the third-generation methods allow direct sequencing of single DNA molecules. The first techniques to sequence DNA were not developed until the mid-1970s, when two distinct sequencing methods were developed almost simultaneously, one by Alan Maxam and Walter Gilbert, and the other one by Frederick Sanger. The first one is a chemical method to cleave DNA at specific points and the second one uses ddNTPs, which synthesizes a copy from the DNA chain template. Nevertheless, both methods generate fragments of varying lengths that are further electrophoresed. Moreover, it is important to say that until the 1990s, the sequencing of DNA was relatively expensive and it was seen as a long process. Besides, using radiolabeled nucleotides also compounded the problem through safety concerns and prevented the automation. Some advancements within the first generation include the replacement of radioactive labels by fluorescent labeled ddNTPs and cycle sequencing with thermostable DNA polymerase, which allows automation and signal amplification, making the process cheaper, safer and faster. Another method is Pyrosequencing, which is based on the “sequencing by synthesis” principle. It differs from Sanger sequencing, in that it relies on the detection of pyrophosphate release on nucleotide incorporation. By the end of the last millennia, parallelization of this method started the Next Generation Sequencing (NGS) with 454 as the first of many methods that can process multiple samples, calling it the 2º generation sequencing. Here electrophoresis was completely eliminated. One of the methods that is sometimes used is SOLiD, based on sequencing by ligation of fluorescently dye-labeled di-base probes which competes to ligate to the sequencing primer. Specificity of the di-base probe is achieved by interrogating every 1st and 2nd base in each ligation reaction. The widely used Solexa/Illumina method uses modified dNTPs containing so called “reversible terminators” which blocks further polymerization. The terminator also contains a fluorescent label, which can be detected by a camera. Now, the previous step towards the third generation was in charge of Ion Torrent, who developed a technique that is based in a method of “sequencing-by-synthesis”. Its main feature is the detection of hydrogen ions that are released during base incorporation. Likewise, the third generation takes into account nanotechnology advancements for the processing of unique DNA molecules to a real time synthesis sequencing system like PacBio; and finally, the NANOPORE, projected since 1995, also uses Nano-sensors forming channels obtained from bacteria that conducts the sample to a sensor that allows the detection of each nucleotide residue in the DNA strand. The advancements in terms of technology that we have nowadays have been so quick, that it makes wonder: ¿How do we imagine the next generation?
Resumo:
The Next Generation Sequencing (NGS) allows to sequence the whole genome of an organism, compared to Maxam and Gilbert and Sanger sequencing that only allow to sequence, hardly, a single gene. Removing the separation of DNA fragments by electrophoresis, and the development of techniques that let the parallelization (analysing simultaneously several DNA fragments) have been crucial for the improvements of this process. The new companies in this ambit, Roche and Illumina, bet for different protocols to achieve these goals. Illumina bets for the sequencing by synthesis (SBS), requiring the library preparation and the use of adapters. Likewise, Illumina has replaced Roche because its lower rate of misincorporation, making it ideal for studies of genetic variability, transcriptomic, epigenomic, and metagenomic, in which this study will focus. However, it is noteworthy that the last progress in sequencing is carried out by the third generation sequencing, using nanotechnology to design small sequencers that sequence the whole genome of an organism quickly and inexpensively. Moreover, they provide more reliable data than current systems because they sequence a single molecule, solving the problem of synchronisation. In this way, PacBio and Nanopore allow a great progress in diagnostic and personalized medicine. Metagenomics provide to make a qualitative and quantitative analysis of the various species present in a sample. The main advantage of this technique is the no necessary isolation and growth of the species, allowing the analysis of nonculturable species. The Illumina protocol studies the variable regions of the 16S rRNA gene, which contains variable and not variables regions providing a phylogenetic classification. Therefore, metagenomics is a topic of interest to know the biodiversity of complex ecosystems and to study the microbiome of patients given the high involvement with certain microbial profiles on the condition of certain metabolic diseases.
Resumo:
The central role of translation regulation in the control of critical cellular processes has long been recognized. Yet the systematic exploration of quantitative changes in translation at a genome-wide scale in response to specific stimuli has only recently become technically feasible. Using a genetic approach, we have identified new Arabidopsis weak-ethylene insensitive mutants that also display defects in translation, which suggested the existence of a previously unknown molecular module involved in ethylene-mediated translation regulation of components of this signaling pathway. To explore this link in detail, we implemented for Arabidopsis the ribosome-footprinting technology, which enables the study of translation at a whole-genome level at single codon resolution[1]. Using ribosome-footprinting we examined the effects of short exposure to ethylene on the Arabidopsis translatome looking for ethylene-triggered changes in translation rates that could not be explained by changes in transcript levels. The results of this research, in combination with the characterization of a subset of the aforementioned weak-ethylene insensitive mutants that are defective in the UPF genes (core-components of the nonsense-mediated mRNA decay machinery), uncovered a translation-based branch of the ethylene signaling pathway[2]. In the presence of ethylene, translation of a negative regulator of ethylene signaling EBF2 is repressed, despite induced transcription of this gene. These translational effects of ethylene require the long 3´UTR of EBF2 (3´EBF2), which is recognized by the C-terminal end of the key ethylene-signaling protein EIN2 (EIN2C) in the cytoplasm once EIN2C is released from the ER-membrane by proteolytic cleavage. EIN2C binds the 3´EBF2, recruits the UPF proteins and moves to P-bodies, where the translation of EBF2 in inhibited despite its mRNA accumulation. Once the ethylene signal is withdrawn, the translation of the stored EBF2 mRNAs is resumed, thus rapidly dampening the ethylene response. These findings represent a mechanistic paradigm of gene-specific regulation of translation in response to a key growth regulator. Translation regulatory elements can be located in both 3′ and 5′ UTRs. We are now focusing on the ead1 and ead2 mutants, another set of ethylene-signaling mutants defective in translational regulation. Ribosome-footprinting on the ead1 mutant revealed an accumulation of translating ribosomes in the 5´UTRs of uORF-containing genes and reduction in the levels of ribosomes in the main ORF. The mutant is also impaired in the translation of GFP when this reporter is fused to WT 5´UTR of potential EAD1 targets but not when GFP is fused to the uORF-less versions of the same 5´UTRs. Our hypothesis is that EAD1/2 work as a complex that is required for the efficient translation of mRNAs that have common structural (complex 5´UTR with uORFs) and functional (regulation of key cellular processes) features. We are working towards the identification of the conditions where the EAD1 regulation of translation is required. [1] Ingolia, N. et al. (2009) Genome-Wide Analysis in Vivo of Translation with Nucleotide Resolution Using Ribosome Profiling. Science, 324; 218-222 [2] Merchante, C. et al. (2015) Gene-Specific Translation Regulation Mediated by the Hormone-Signaling Molecule EIN2. Cell, 163(3): 684-697