3 resultados para Conjugation

em Repositorio Institucional de la Universidad de Málaga


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Oligophenylenes (polyphenylenes) are constituted by an array of conjugated benzenes where inter-ring electron delocalization tends to extend over the whole chain (linear conjugation) being intrinsically limited, among other factors, by terminal effects. Alternatively, cyclic conjugation is envisaged as the unlimited free-boundary versionofconjugation which will impact the structure of molecules in rather unknown ways. The cyclic version of oligophenylenes, cycloparaphenylenes ([n]CPPs with n the number of phenyl rings) were first synthesized in 2008 by Beztozzi and Jasti.1 Today the whole [n]CPP series from [5]CPP to [18]CPP has been prepared. [n]CPPs represent ideal models to investigate new insights of the electronic structure of molecules and cyclic conjugation when electrons or charges circulate in a closed circuit without boundaries. Radical cations and dications of [n]CPP from n=5 to n=12 have been prepared and studied by Raman spectroscopy.2 Small [n]CPP dications own their stability to the closed-shell electronic configuration imposed by cyclic conjugation. However, in large [n]CPP dications cyclic conjugation is minimal and these divalent species form open-shell biradicals. The Raman spectra reflect the effect of cyclic conjugation in competition with cyclic strain and biradicaloid aromatic stabilization. Cyclic conjugation provokes the existence of a turning point or V-shape behavior of the frequencies of the G bands as a function of n. In this communication we will show the vibrational spectroscopic fingerprint of this rare form of conjugation. [1] R. Jasti, J. Bhattacharjee, J. B. Neaton, C. R. Bertozzi, “Synthesis, Characterization, and Theory of [9]-, [12]-, and [18]Cycloparaphenylene: Carbon Nanohoop Structures”, J. Am. Chem. Soc. 130 (2008), 17646–17647. [2] M. P. Alvarez, P. M. Burrezo, M. Kertesz, T. Iwamoto, S. Yamago, J. Xia, R. Jasti, J. T. L. Navarrete, M. Taravillo, V. G. Baonza, J. Casado, “Properties of Sizeable [n]CycloParaPhenylenes As Molecular Models of Single-Wall Carbon Nanotubes By Raman Spectroscopy: Structural and Electron-Transfer Responses Under Mechanical Stress”, Angew. Chem. Int. Ed. 53, (2014), 7033−7037.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Ambipolar organic field-effect transistors (OFETs), which can efficiently transport both holes and electrons, using a single type of electrode, are currently of great interest due to their possible applications in complementary metal oxide semiconductor (CMOS)-like circuits, sensors, and in light-emitting transistors. Several theoretical and experimental studies have argued that most organic semiconductors should be able to transport both types of carrier, although typically unipolar behavior is observed. One factor that can compromise ambipolar transport in organic semiconductors is poor solid state overlap between the HOMO (p-type) or LUMO (n-type) orbitals of neighboring molecules in the semiconductor thin film. In the search of low-bandgap ambipolar materials, where the absence of skeletal distortions allows closer intermolecular π-π stacking and enhanced intramolecular π-conjugation, a new family of oligothiophene-naphthalimide assemblies have been synthesized and characterized, in which both donor and acceptor moieties are directly conjugated through rigid linkers. In previous works we found that oligothiophene-napthalimide assemblies connected through amidine linkers (NDI derivates) exhibit skeletal distortions (50-60º) arising from steric hindrance between the carbonyl group of the arylene core and the sulphur atom of the neighbored thiophene ring (see Figure 1). In the present work we report novel oligo- and polythiophene–naphthalimide analogues NAI-3T, NAI-5T and poly-NAI-8C-3T, in which the connections of the amidine linkage have been inverted in order to prevent steric interactions. Thus, the nitrogen atoms are directly connected to the naphthalene moiety in NAI derivatives while they were attached directly to the thiophene moiety in the previously investigated NDI-3T and NDI-5T. In Figure 1 is depicted the calculated molecular structure of NAI-3T together with that of NDI-3T showing how the steric interactions are not present in the novel NAI derivative. The planar skeletons in these new family induce higher degree of crystallinity and the carrier charge transport can be switched from n-type to ambipolar behaviour. The highest FET performance is achieved for vapor-deposited films of NAI-3T with mobilities of 1.95x10-4cm2V-1s-1 and 2.00x10-4cm2V-1s-1 for electrons and holes, respectively. Finally, these planar semiconductors are compared with their NDI derivates analogues, which exhibit only n-type mobility, in order to understand the origin of the ambipolarity in this new series of molecular semiconductors.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Fluorescent probes are essential tools for studying biological systems. The last decade has witnessed particular interest in the development of two-photon excitable probes, due to their advantageous features in tissue imaging compared to the corresponding one-photon probes [1]. Recently, we have designed and synthetized an aminonaphthalimide–BODIPY derivative as energy transfer cassettes and were found to show very fast and efficient BODIPY fluorescence sensitization [2]. This was observed upon one- and two-photon excitation, which extends the application range of the investigated bichromophoric dyads in terms of accessible excitation wavelengths. In order to increase the two-photon absorption of the system aminonaphthalimide fluorophore was replace with a Prodan analog (BODIPY dyad 1), which presents found a variety of applications as probes and labels in biology [3]. The two-photon absorption cross-section  of the dyads is significantly incremented by the presence of the 6-acetyl-2-naphthylamine donor group. The emission maximum of a BODIPY fluorophore can significantly be red-shifted in comparison to their precursors by conjugation with aromatic aldehydes. [4] We use a synthetic strategy to obtain BODIPY dyad 2 that incorporates an imidazole ring. This molecule can be used in biological media as a near-neutral pH indicator based on one- and two-photon excitable BODIPY acceptor.