3 resultados para Cloud Computing, Software-as-a-Service (SaaS), SaaS Multi-Tenant, Windows Azure
em Repositorio Institucional de la Universidad de Málaga
Resumo:
This talk, which is based on our newest findings and experiences from research and industrial projects, addresses one of the most relevant challenges for a decade to come: How to integrate the Internet of Things with software, people, and processes, considering modern Cloud Computing and Elasticity principles. Elasticity is seen as one of the main characteristics of Cloud Computing today. Is elasticity simply scalability on steroids? This talk addresses the main principles of elasticity, presents a fresh look at this problem, and examines how to integrate people, software services, and things into one composite system, which can be modeled, programmed, and deployed on a large scale in an elastic way. This novel paradigm has major consequences on how we view, build, design, and deploy ultra-large scale distributed systems.
Resumo:
The diversity in the way cloud providers o↵er their services, give their SLAs, present their QoS, or support di↵erent technologies, makes very difficult the portability and interoperability of cloud applications, and favours the well-known vendor lock-in problem. We propose a model to describe cloud applications and the required resources in an agnostic, and providers- and resources-independent way, in which individual application modules, and entire applications, may be re-deployed using different services without modification. To support this model, and after the proposal of a variety of cross-cloud application management tools by different authors, we propose going one step further in the unification of cloud services with a management approach in which IaaS and PaaS services are integrated into a unified interface. We provide support for deploying applications whose components are distributed on different cloud providers, indistinctly using IaaS and PaaS services.
Resumo:
Technologies for Big Data and Data Science are receiving increasing research interest nowadays. This paper introduces the prototyping architecture of a tool aimed to solve Big Data Optimization problems. Our tool combines the jMetal framework for multi-objective optimization with Apache Spark, a technology that is gaining momentum. In particular, we make use of the streaming facilities of Spark to feed an optimization problem with data from different sources. We demonstrate the use of our tool by solving a dynamic bi-objective instance of the Traveling Salesman Problem (TSP) based on near real-time traffic data from New York City, which is updated several times per minute. Our experiment shows that both jMetal and Spark can be integrated providing a software platform to deal with dynamic multi-optimization problems.