2 resultados para Chemical characterization
em Repositorio Institucional de la Universidad de Málaga
Resumo:
Spectral identification of individual micro- and nano-sized particles by the sequential intervention of optical catapulting, optical trapping and laser-induced breakdown spectroscopy is presented [1]. The three techniques are used for different purposes. Optical catapulting (OC) serves to put the particulate material under inspection in aerosol form [2-4]. Optical trapping (OT) permits the isolation and manipulation of individual particles from the aerosol, which are subsequently analyzed by laser-induced breakdown spectroscopy (LIBS). Once catapulted, the dynamics of particle trapping depends on the laser beam characteristics (power and intensity gradient) and on the particle properties (size, mass and shape). Particles are stably trapped in air at atmospheric pressure and can be conveniently manipulated for a precise positioning for LIBS analysis. The spectra acquired from the individually trapped particles permit a straightforward identification of the inspected material. The current work focuses on the development of a procedure for simultaneously acquiring dual information about the particle under study via LIBS and time-resolved plasma images by taking advantage of the aforementioned features of the OC-OT-LIBS instrument to align the multiple lines in a simple yet highly accurate way. The plasma imaging does not only further reinforce the spectral data, but also allows a better comprehension of the chemical and physical processes involved during laser-particle interaction. Also, a thorough determination of the optimal excitation conditions generating the most information out of each laser event was run along the determination of parameters such as the width of the optical trap, its stability as a function of the laser power and the laser wavelength. The extreme sensibility of the presented OC-OT-LIBS technology allows a detection power of attograms for single/individual particle analysis.
Resumo:
Nowadays, one of the most important areas of interest in archeology is the characterization of the submersed cultural heritage. Mediterranean Sea is rich in archaeological findings due to storms, accidents and naval battles since prehistoric times. Chemical analysis of submerged materials is an extremely valuable source of information on the origin and precedence of the wrecks, and also the raw materials employed during the manufacturing of the objects found in these sites. Nevertheless, sometimes it is not possible to extract the archaeological material from the marine environment due to size of the sample, the legislation or preservation purposes. In these cases, the in-situ analysis turns into the only alternative for obtaining information. In spite of this demand, no analytical techniques are available for the in-situ chemical characterization of underwater materials. The versatility of laser-induced breakdown spectroscopy (LIBS) has been successfully tested in oceanography 1. Advantages such as rapid and in situ analysis with no sample preparation make LIBS a suitable alternative for field measurements. To further exploit the inherent advantages of the technology, a mobile fiber-based LIBS platform capable of performing remote measurements up to 50 meters range has been designed for the recognition and identification of artworks in underwater archaeological shipwrecks. The LIBS prototype featured both single-pulse (SP-LIBS) and multi-pulse excitation (MP-LIBS) 2. The use of multi-pulse excitation allowed an increased laser beam energy (up to 95 mJ) transmitted through the optical fiber. This excitation mode results in an improved performance of the equipment in terms of extended range of analysis (to a depth of 50 m) and a broader variety of samples to be analyzed (i.e., rocks, marble, ceramics and concrete). In the present work, the design and construction considerations of the instrument are reported and its performance is discussed on the basis of the spectral response, the remote irradiance achieved upon the range of analysis and its influence on plasma properties, as well as the effect of the laser pulse duration and purge gas to the LIBS signal. Also, to check the reliability and reproducibility of the instrument for field analysis several robustness tests were performed outside the lab. Finally, the capability of this instrument was successfully demonstrated in an underwater archaeological shipwreck (San Pedro de Alcántara, Malaga).