2 resultados para Celle in silicio cristallino, Riflettanza, Testurizzazione, Light trapping

em Repositorio Institucional de la Universidad de Málaga


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Stress serves as an adaptive mechanism and helps organisms to cope with life-threatening situations. However, individual vulnerability to stress and dysregulation of this system may precipitate stress-related disorders such as depression. The neurobiological circuitry in charge of dealing with stressors has been widely studied in animal models. Recently our group has demonstrated a role for lysophosphatidic acid (LPA) through the LPA1 receptor in vulnerability to stress, in particular the lack of this receptor relates to robust decrease of adult hippocampal neurogenesis and induction of anxious and depressive states. Nevertheless, the specific abnormalities in the limbic circuit in reaction to stress remains unclear. The aim of this study is to examine the differences in the brain activation pattern in the presence or absence of LPA1 receptor after acute stress. For this purpose, we have studied the response of maLPA1-null male mice and normal wild type mice to an intense stressor: Tail Suspension Test. Activation induced by behaviour of brain regions involved in mood regulation was analysed by stereological quantification of c-Fos immunoreactive positive cells. We also conducted multidimensional scaling analysis in order to unravel coativation between structures. Our results revealed hyperactivity of stress-related structures such as amygdala and paraventricular nucleus of the hypothalamus in the knockout model and different patterns of coactivation in both genotypes using a multidimensional map. This data provides further evidence to the engagement of the LPA1 receptors in stress regulation and sheds light on different neural pathways under normal and vulnerability conditions that can lead to mood disorders.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Spectral identification of individual micro- and nano-sized particles by the sequential intervention of optical catapulting, optical trapping and laser-induced breakdown spectroscopy is presented [1]. The three techniques are used for different purposes. Optical catapulting (OC) serves to put the particulate material under inspection in aerosol form [2-4]. Optical trapping (OT) permits the isolation and manipulation of individual particles from the aerosol, which are subsequently analyzed by laser-induced breakdown spectroscopy (LIBS). Once catapulted, the dynamics of particle trapping depends on the laser beam characteristics (power and intensity gradient) and on the particle properties (size, mass and shape). Particles are stably trapped in air at atmospheric pressure and can be conveniently manipulated for a precise positioning for LIBS analysis. The spectra acquired from the individually trapped particles permit a straightforward identification of the inspected material. The current work focuses on the development of a procedure for simultaneously acquiring dual information about the particle under study via LIBS and time-resolved plasma images by taking advantage of the aforementioned features of the OC-OT-LIBS instrument to align the multiple lines in a simple yet highly accurate way. The plasma imaging does not only further reinforce the spectral data, but also allows a better comprehension of the chemical and physical processes involved during laser-particle interaction. Also, a thorough determination of the optimal excitation conditions generating the most information out of each laser event was run along the determination of parameters such as the width of the optical trap, its stability as a function of the laser power and the laser wavelength. The extreme sensibility of the presented OC-OT-LIBS technology allows a detection power of attograms for single/individual particle analysis.