5 resultados para Cell-wall-lacking
em Repositorio Institucional de la Universidad de Málaga
Resumo:
Strawberry (Fragaria x ananassa, Duch.) fruit is characterized by its fast ripening and soft texture at the ripen stage, resulting in a short postharvest shelf life and high economic losses. It is generally believed that the disassembly of cell walls, the dissolution of the middle lamella and the reduction of cell turgor are the main factors determining the softening of fleshy fruits. In strawberry, several studies indicate that the solubilisation and depolymerisation of pectins, as well as the depolymerisation of xyloglucans, are the main processes occurring during ripening. Functional analyses of genes encoding pectinases such as polygalacturonase and pectate lyase also point out to the pectin fraction as a key factor involved in textural changes. All these studies have been performed with whole fruits, a complex organ containing different tissues that differ in their cell wall composition and undergo ripening at different rates. Cell cultures derived from fruits have been proposed as model systems for the study of several processes occurring during fruit ripening, such as the production of anthocyanin and its regulation by plant hormones. The main objective of this research was to obtain and characterize strawberry cell cultures to evaluate their potential use as a model for the study of the cell wall disassembly process associate with fruit ripening. Cell cultures were obtained from cortical tissue of strawberry fruits, cv. Chandler, at the stages of unripe-green, white and mature-red. Additionally, a cell culture line derived from strawberry leaves was obtained. All cultures were maintained in solid medium supplemented with 2.5 mg.l-1 2,4-D and incubated in the dark. Cell walls from the different callus lines were extracted and fractionated to obtain CDTA and sodium carbonate soluble pectin fractions, which represent polyuronides located in the middle lamella or the primary cell wall, respectively. The amounts of homogalacturonan in both fractions were estimated by ELISA using LM19 and LM20 antibodies, specific against demethylated and methyl-esterified homogalacturonan, respectively. In the CDTA fraction, the cell line from ripe fruit showed a significant lower amount of demethylated pectins than the rest of lines. By contrast, the content of methylated pectins was similar in green- and red-fruit lines, and lower than in white-fruit and leaf lines. In the sodium carbonate pectin fraction, the line from red fruit also showed the lowest amount of pectins. These preliminary results indicate that cell cultures obtained from fruits at different developmental stages differ in their cell wall composition and these differences resemble to some extent the changes that occur during strawberry softening. Experiments are in progress to further characterize cell wall extracts with monoclonal antibodies against other cell wall epitopes.
Resumo:
Conifer trees divert large quantities of carbon into the biosynthesis of phenylpropanoids, particularly to generate lignin, an important constituent of wood. Since phenylalanine is the precursor for phenylpropanoid biosynthesis, the precise regulation of phenylalanine synthesis and utilization should occur simultaneously. This crucial pathway is finely regulated primarily at the transcriptional level. Transcriptome analyses indicate that the transcription factors (TFs) preferentially expressed during wood formation in plants belong to the MYB and NAC families. Craven-Bartle et al. (2013) have shown in conifers that Myb8 is a candidate regulator of key genes in phenylalanine biosynthesis involved in the supply of the phenylpropane carbon skeleton necessary for lignin biosynthesis. This TF is able to bind AC elements present in the promoter regions of these genes to activate transcription. Constitutive overexpression of Myb8 in white spruce increased secondary-wall thickening and led to ectopic lignin deposition (Bomal et al. 2008). In Arabidopsis, the transcriptional network controlling secondary cell wall involves NAC-domain regulators operating upstream Myb transcription factors. Functional orthologues of members of this network described have been identified in poplar and eucalyptus, but in conifers functional evidence had only been obtained for MYBs. We have identified in the P. pinaster genome 37 genes encoding NAC proteins, which 3 NAC proteins could be potential candidates to be involved in vascular development (Pascual et al. 2015). The understanding of the transcriptional regulatory network associated to phenylpropanoids and lignin biosynthesis in conifers is crucial for future applications in tree improvement and sustainable forest management. This work is supported by the projects BIO2012-33797, BIO2015-69285-R and BIO-474 References: Bomal C, et al. (2008) Involvement of Pinus taeda MYB1 and MYB8 in phenylpropanoid metabolism and secondary cell wall biogenesis: a comparative in planta analysis. J Exp Bot. 59: 3925-3939. Craven-Bartle B, et al. (2013) A Myb transcription factor regulates genes of the phenylalanine pathway in maritime pine. Plant J, 74: 755-766. Pascual MB, et al. (2015) The NAC transcription factor family in maritime pine (Pinus pinaster): molecular regulation of two genes involved in stress responses. BMC Plant Biol, 15: 254.
Resumo:
Atomic force microscopy (AFM) allows the analysis of individual polymers at nanostructural level with a minimal sample preparation. This technique has been used to analyse the pectin disassembly process during the ripening and postharvest storage of several fleshy fruits. In general, pectins analysed by AFM are usually visualized as isolated chains, unbranched or with a low number of branchs and, occasionally, as large aggregates. However, the exact nature of these structures is unknown. It has been suggested that pectin aggregates represent a mixture of rhamnonogalacturonan I and homogalacturonan, while isolated chains and their branches are mainly composed by polygalacturonic acid. In order to gain insight into the nature of these structures, sodium carbonate soluble pectins from ripe strawberry (Fragaria x ananassa, Duch.) fruits were subjected to enzymatic digestion with endo-Polygalacturonase M2 from Aspergillus aculeatus, and the samples visualized by AFM at different time intervals. Pectins isolated from control, non-transformed plants, and two transgenic genotypes with low level of expression of ripening-induced pectinase genes encoding a polygalacturonase (APG) or a pectate lyase (APEL) were also included in this study. Before digestion, isolated pectin chains from control were shorter than those from transgenic fruits, showing number-average (LN) contour length values of 73.2 nm vs. 95.9 nm and 91.4 nm in APG and APEL, respectively. The percentage of branched polymers was significantly higher in APG polyuronides than in the remaining genotypes, 33% in APG vs. 6% in control and APEL. As a result of the endo-PG treatment, a gradual decrease in the main backbone length of isolated chains was observed in the three samples. The minimum LN value was reached after 8 h of digestion, being similar in the three genotypes, 22 nm. By contrast, the branches were not visible after 1.5-2 h of digestion. LN values were plotted against digestion time and the data fitted to a first-order exponential decay curve, obtaining R2 values higher than 0.9. The half digestion time calculated with these equations were similar for control and APG pectins, 1.7 h, but significantly higher in APEL, 2.5 h, indicating that these polymer chains were more resistant to endo-PG digestion. Regarding the pectin aggregates, their volumes were estimated and used to calculate LN molecular weights. Before digestion, control and APEL samples showed complexes of similar molecular weights, 1722 kDa, and slightly higher than those observed in APG samples. After endo-PG digestion, size of complexes diminished significantly, reaching similar values in the three pectin samples, around 650 kDa. These results suggest that isolated polymer chains visualized by AFM are formed by a HG domain linked to a shorter polymer resistant to endo-PG digestion, maybe xylogalacturonan or RG-I. The silencing of the pectate lyase gene slightly modified the structure and/or chemical composition of polymer chains making these polyuronides more resistant to enzymatic degradation. Similarly, polygalacturonic acid is one of the main component of the aggregates.
Resumo:
P2-2 NAC-MYB-BASED TRANSCRIPCIONAL NETWORK INVOLVED IN THE REGULATION OF PHENYLALANINE BIOSYNTHESIS IN P. PINASTER Mª Belén Pascual, Rafael A. Cañas, Blanca Craven-Bartle, Francisco M. Cánovas and Concepción Ávila Departamento de Biología Molecular y Bioquímica. Facultad de Ciencias. Universidad de Málaga. Campus de teatinos s/n, Málaga, Spain Email: cavila@uma.es Conifer trees divert large quantities of carbon into the biosynthesis of phenylpropanoids, particularly to generate lignin, an important constituent of wood. Since phenylalanine is the precursor for phenylpropanoid biosynthesis, the precise regulation of phenylalanine synthesis and use should occur simultaneously. This crucial pathway is finely regulated primarily at the transcriptional level. Transcriptome analyses indicate that the transcription factors (TFs) preferentially expressed during wood formation in plants belong to the MYB and NAC families. Craven-Bartle et al. (2013) have shown that Myb8 is a candidate regulator of key genes in phenylalanine biosynthesis involved in the supply of the phenylpropane carbon skeleton necessary for lignin biosynthesis. This TF is able to bind AC elements present in the promoter regions of these genes to activate transcription. In Arabidopsis, the transcriptional network controlling secondary cell wall involves NAC-domain regulators operating upstream Myb transcription factors. We have identified in the P. pinaster genome three NAC proteins as potential candidates to be involved in vascular development. One of them, PpNAC1 is expressed both in xylem and compression wood from adult trees and has been thoroughly characterized. Its role upstream the transcriptional network involving Myb8 will be discussed. The understanding of the transcriptional regulatory network associated to phenylpropanoids and lignin biosynthesis in conifers is crucial for future applications in tree improvement and sustainable forest management.
Resumo:
METABOLIC CHANNELING OF PHE FOR LIGNIN BIOSYNTHESIS IN MARITIME PINE Jorge El-Azaz, Fernando de la Torre, Belén Pascual, Concepción Ávila and Francisco M. Cánovas Departamento de Biología Molecular y Bioquímica, Universidad de Málaga. Málaga, Spain Email: jelazaz@alu.uma.es The amino acid phenylalanine (Phe) is the main precursor of phenylpropanoids biosynthesis in plants. This vast family of Phederived compounds can represent up to 30% of captured photosynthetic carbon, playing essential roles in plants such as cell wall components, defense molecules, pigments and flavors. In addition to its physiological importance, phenylpropanoids and particularly lignin, a component of wood, are targets in plant biotechnology. The arogenate pathway has been proposed as the main pathway for Phe biosynthesis in plants (Maeda et al., 2010). The final step in Phe biosynthesis, catalyzed by the enzyme arogenate dehydratase (ADT), has been considered as a key regulatory point in Phe biosynthesis, due to its key branch position in the pathway, the multiple isoenzymes identified in plants and the existence of a feedback inhibition mechanism by Phe. So far, the regulatory mechanisms underlying ADT genes expression have been poorly characterized, although a strong regulation of the Phe metabolic flux should be expected depending on its alternative use for protein biosynthesis versus phenylpropanoid biosynthesis. This second fate involves a massive carbon flux compared to the first one. In this study we report our current research activities in the transcriptional regulation of ADT genes by MYB transcription factors in the conifer Pinus pinaster (maritime pine). The conifers channels massive amounts of photosynthetic carbon for phenylpropanoid biosynthesis during wood formation. We have identified the complete ADT gene family in maritime pine (El-Azaz et al., 2016) and a set of ADT isoforms specifically related with the lignification process. The potential control of transcription factors previously reported as key regulators in pine wood formation (Craven-Bartle et al., 2013) will be presented. Maeda et al. (2010) Plant Cell 22: 832-849. El-Azaz et al. (2016) The Plant Jounal. Accepted article, doi: 10.1111/tpj.13195 Craven-Bartle et al. (2013). The Plant Journal 74(5):755-766