4 resultados para Almost Optimal Density Function
em Repositorio Institucional de la Universidad de Málaga
Resumo:
There are diferent applications in Engineering that require to compute improper integrals of the first kind (integrals defined on an unbounded domain) such as: the work required to move an object from the surface of the earth to in nity (Kynetic Energy), the electric potential created by a charged sphere, the probability density function or the cumulative distribution function in Probability Theory, the values of the Gamma Functions(wich useful to compute the Beta Function used to compute trigonometrical integrals), Laplace and Fourier Transforms (very useful, for example in Differential Equations).
Resumo:
This paper shows that the proposed Rician shadowed model for multi-antenna communications allows for the unification of a wide set of models, both for multiple-input multiple-output (MIMO) and single- input single-output (SISO) communications. The MIMO Rayleigh and MIMO Rician can be deduced from the MIMO Rician shadowed, and so their SISO counterparts. Other more general SISO models, besides the Rician shadowed, are included in the model, such as the κ-μ, and its recent generalization, the κ-μ shadowed model. Moreover, the SISO η-μ and Nakagami-q models are also included in the MIMO Rician shadowed model. The literature already presents the probability density function (pdf) of the Rician shadowed Gram channel matrix in terms of the well-known gamma- Wishart distribution. We here derive its moment generating function in a tractable form. Closed- form expressions for the cumulative distribution function and the pdf of the maximum eigenvalue are also carried out.
Resumo:
Facility location concerns the placement of facilities, for various objectives, by use of mathematical models and solution procedures. Almost all facility location models that can be found in literature are based on minimizing costs or maximizing cover, to cover as much demand as possible. These models are quite efficient for finding an optimal location for a new facility for a particular data set, which is considered to be constant and known in advance. In a real world situation, input data like demand and travelling costs are not fixed, nor known in advance. This uncertainty and uncontrollability can lead to unacceptable losses or even bankruptcy. A way of dealing with these factors is robustness modelling. A robust facility location model aims to locate a facility that stays within predefined limits for all expectable circumstances as good as possible. The deviation robustness concept is used as basis to develop a new competitive deviation robustness model. The competition is modelled with a Huff based model, which calculates the market share of the new facility. Robustness in this model is defined as the ability of a facility location to capture a minimum market share, despite variations in demand. A test case is developed by which algorithms can be tested on their ability to solve robust facility location models. Four stochastic optimization algorithms are considered from which Simulated Annealing turned out to be the most appropriate. The test case is slightly modified for a competitive market situation. With the Simulated Annealing algorithm, the developed competitive deviation model is solved, for three considered norms of deviation. At the end, also a grid search is performed to illustrate the landscape of the objective function of the competitive deviation model. The model appears to be multimodal and seems to be challenging for further research.
Resumo:
Wingtip vortices represent a hazard for the stability of the following airplane in airport highways. These flows have been usually modeled as swirling jets/wakes, which are known to be highly unstable and susceptible to breakdown at high Reynolds numbers for certain flow conditions, but different to the ones present in real flying airplanes. A very recent study based on Direct Numerical Simulations (DNS) shows that a large variety of helical responses can be excited and amplified when a harmonic inlet forcing is imposed. In this work, the optimal response of q-vortex (both axial vorticity and axial velocity can be modeled by a Gaussian profile) is studied by considering the time-harmonically forced problem with a certain frequency ω. We first reproduce Guo and Sun’s results for the Lamb-Oseen vortex (no axial flow) to validate our numerical code. In the axisymmetric case m = 0, the system response is the largest when the input frequency is null. The axial flow has a weak influence in the response for any axial velocity intensity. We also consider helical perturbations |m| = 1. These perturbations are excited through a resonance mechanism at moderate and large wavelengths as it is shown in Figure 1. In addition, Figure 2 shows that the frequency at which the optimal gain is obtained is not a continuous function of the axial wavenumber k. At smaller wavelengths, large response is excited by steady forcing. Regarding the axial flow, the unstable response is the largest when the axial velocity intensity, 1/q, is near to zero. For perturbations with higher azimuthal wavenumbers |m| > 1, the magnitudes of the response are smaller than those for helical modes. In order to establish an alternative validation, DNS has been carried out by using a pseudospectral Fourier formulation finding a very good agreement.