2 resultados para Aggregate (Building materials) -- Catalonia -- Garrotxa

em Repositorio Institucional de la Universidad de Málaga


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Ordinary Portland cement (OPC) is an environmentally contentious material, as for every ton of OPC produced, on average, 0.97 tons of CO2 are released. Ye'elimite-rich cements are considered as eco-cements because their manufacturing process releases less CO2 into the atmosphere than OPC; this is due to the low calcite demand. Belite-Alite-Ye’elimite (BAY) cements are promising eco-friendly building materials as OPC substitutes at a large scale. The reaction of alite and ye´elimite with water should develop cements with high mechanical strengths at early ages, while belite will contribute to later curing times. However, they develop lower mechanical strengths at early-medium ages than OPC. It is known that the presence of different polymorphs of ye'elimite and belite affects the hydration due to the different reactivity of those phases. Thus, a solution to this problem may be well the activation of BAY clinkers by preparing them with 'H-belite and pseudo-cubic-ye'elimite, jointly with alite. The aim of this work is the preparation and characterization of active-BAY clinkers which contain high percentages of coexisting 'H-belite and pseudo-cubic-ye'elimite, jointly with alite to develop, in a future step, comparable mechanical strengths to OPC. The parameters evolved in the preparation of the clinker have been optimized, including the selection of raw materials (mineralizers and activators) and clinkering conditions. Finally, the clinker was characterized through laboratory X-ray powder diffraction, in combination with the Rietveld methodology, and scanning electron microscopy.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Restoring the native vegetation is the most effective way to regenerate soil health. Under these conditions, vegetation cover in areas having degraded soils may be better sustained if the soil is amended with an external source of organic matter. The addition of organic materials to soils also increases infiltration rates and reduces erosion rates; these factors contribute to an available water increment and a successful and sustainable land management. The goal of this study was to analyze the effect of various organic amendments on the aggregate stability of soils in afforested plots. An experimental paired-plot layout was established in southern of Spain (homogeneous slope gradient: 7.5%; aspect: N170). Five amendments were applied in an experimental set of plots: straw mulching; mulch with chipped branches of Aleppo Pine (Pinus halepensis L.); TerraCotten hydroabsobent polymers; sewage sludge; sheep manure and control. Plots were afforested following the same spatial pattern, and amendments were mixed with the soil at the rate 10 Mg ha-1. The vegetation was planted in a grid pattern with 0.5 m between plants in each plot. During the afforestation process the soil was tilled to 25 cm depth from the surface. Soil from the afforested plots was sampled in: i) 6 months post-afforestation; ii) 12 months post-afforestation; iii) 18 months post-afforestation; and iv) 24 months post-afforestation. The sampling strategy for each plot involved collection of 4 disturbed soil samples taken from the surface (0–10 cm depth). The stability of aggregates was measured by wet-sieving. Regarding to soil aggregate stability, the percentage of stable aggregates has increased slightly in all the treatments in relation to control. Specifically, the differences were recorded in the fraction of macroaggregates (≥ 0.250 mm). The largest increases have been associated with straw mulch, pinus mulch and sludge. Similar results have been registered for the soil organic carbon content. Independent of the soil management, after six months, no significant differences in microaggregates were found regarding to the control plots. These results showed an increase in the stability of the macroaggregates when soil is amended with sludge, pinus mulch and straw much. This fact has been due to an increase in the number cementing agents due to: (i) the application of pinus, straw and sludge had resulted in the release of carbohydrates to the soil; and thus (ii) it has favored the development of a protective vegetation cover, which has increased the number of roots in the soil and the organic contribution to it.