6 resultados para TEOREMAS INDICATIVOS
em Repositorio Institucional de la Universidad de El Salvador
Resumo:
Trabajo de investigación enfocado en la presentación de un trabajo ordenado y formal sobre la obra de Euclides relacionado a los Anillos de manera que se alcance una mayor comprensión sobre la temática y a la vez que sea utilizado como una herramienta de estudio para otros estudiantes y docentes.
Resumo:
Los Grupos Libres son una área de la Teoría de Grupos, que no es profundizada en la Licenciatura en Matemática, esto, debido al bajo contenido en algebra que posee el pensum, razón por la cual, el propósito del trabajo es mostrarse como una opción para una materia electiva. Con toda la investigación y desarrollo realizado, se ha creado un trabajo apto para que un estudiante pueda leerlo y comprenderlo por sí solo, ya que posee todas las herramientas básicas para su completo entendimiento. Se ha descrito paso a paso, el proceso realizado para la demostración de los teoremas, lemas, proposiciones y corolarios, al igual que los ejercicios, que ayudan a la comprensión de los capítulos. Algunos de los ejemplos presentados son de utilidad para la demostración de los teoremas más importantes. Estos resultados relevantes fueron los objetivos trazados al inicio de la investigación. Dentro del proceso realizado durante el desarrollo del tema está, la intensa búsqueda bibliográfica en libros, revistas y artículos en internet, del cual se escogió lo más importante que permitió obtener como resultado los capítulos con la información principal, en la que se fueron desarrollando los teoremas, corolarios, lemas y proposiciones, a esto se le agregaron los diferentes tipos de ejercicios resueltos. Finalizando con la presentación de los resultados.
Resumo:
Dentro de la teoría de números, la ley de reciprocidad cuadrática está definida como una de las más útiles, desde que fue enunciada en 1772 por Euler. En este trabajo se presenta la Ley de Reciprocidad Cuadrática y da a conocer mediante ejemplos el funcionamiento y la importancia de ésta en la Teoría Elemental de Números. Desarrolla los teoremas básico en la teoría de números (axiomas de suma, de multiplicación y resultados de divisibilidad) aborda la teoría de congruencias lineales y cuadráticas con módulo primo y el criterio de Euler para residuos cuadráticos, observando asimismo, el símbolo de Legendre y sus propiedades. Se concluye con la afirmación de que la Ley de Reciprocidad Cuadrática proporciona un método práctico para determinar el carácter cuadrático de un número, ayudando a determinar la solubilidad de las congruencias cuadráticas, del mismo modo, contribuye también a calcular símbolos Legendre de una forma más sencilla demostrando si un número tiene raíz primitiva de un primo.
Resumo:
Se desarrolla un estudio de todas las herramientas necesarias para llegar al teorema de los ceros de Hilbert el cual luego se demuestra en sus formas débil y fuerte. Se introducen los conceptos básicos relacionados con los anillos noetherianos y las variedades algebraicas afines que son fundamentales para el estudio del teorema de los ceros de Hilbert. Es por ello que estudiamos detenidamente el concepto de ideal primo e ideal primario, como también las distintas operaciones entre ideales, en particular la descomposición primaria de ideales. En seguida se desarrollan las demostraciones de algunos de los teoremas importantes de los anillos noetherianos, haciendo uso de la descomposición primaria de un ideal y un resultado fundamental: el teorema de la base de Hilbert. Además se desarrollan las definiciones, proposiciones, teoremas de una variedad algebraica afín y el ideal asociado a una variedad, así como también el ideal de una variedad y lo más interesante es la descomposición de ideales en variedades algebraicas afines, como la condición de cadena descendente de variedades. También se hace la aplicación de los resultados obtenidos en los capítulos anteriores, para demostrar el teorema de los ceros de Hilbert en su forma dedil así como en la forma fuerte. Finalmente adoptamos una Topología que es muy débil pero sorprendentemente útil ocupando los resultados anteriores, probando propiedades que cumple esta topología como la cerradura topológica y compacidad.
Resumo:
El estudio de la teoría sobre de las cuádricas con Geometría Proyectiva, aplicando conceptos, definiciones, y teoremas fundamentales, los cuales nos llevan a comprender la importancia de su aplicación en las diferentes ramas de la matemática y sus representaciones gráficas. Es por ello que en este trabajo se trata de desarrollar temas que están enfocados a comprender las cuádricas con geometría proyectiva y su importancia. Se desarrollará la noción de proyección, donde se dan definiciones importantes sobre la proyección, así como una descripción de que sucede si se agregan los puntos ideales o puntos al infinito, y que estos sean los centros de proyección, además el enriquecimiento que aportan estos nuevos conceptos. Se desarrollarán los conceptos de coordenadas homogéneas, que es fundamental para la comprensión de los puntos ideales o puntos al infinito, que facilitarán el manejo algebraico en el estudio del espacio proyectivo, el cual también incluye puntos complejos, así como la representación del espacio en diferentes dimensiones, y cambio de estructura de coordenadas, subespacios, hiperplanos y dualidad. Los más importantes teoremas de la Geometría Euclidiana, desarrollado con la Geometría Proyectiva, que es el Teorema de Desargues, y algunos resultados importantes adicionales. También se hará una introducción a proyectividades, razón cruzada, y transformaciones lineales. Se refleja la riqueza que tienen las cuádricas aplicando los conceptos de la geometría proyectiva, así como sus diferentes representaciones. Es importante mencionar que en el pasado el ser humano se ha visto favorecido por tales representaciones, facilitando la comprensión de su entorno, aunque muchas veces no esté consciente de los aspectos matemáticos que están involucrados.
Resumo:
En esta tesis se aborda el problema de obtener una versión certificada de un resultado fundamental en álgebra homológica, conocido como “Desarrollo de las álgebras y complejos de Koszul”. Las principales motivaciones de nuestro trabajo consisten en aumentar nuestro conocimiento sobre la naturaleza del álgebra homológica y topología algebraica de dicho resultado matemático, así como evaluar las distintas posibilidades que ofrecen los complejos de Koszul y álgebras de Koszul para demostrar teoremas en álgebra homológica, y a la vez las aplicaciones en álgebra homológica.