3 resultados para 120602 Ecuaciones diferenciales

em Repositorio Institucional de la Universidad de El Salvador


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Trabajo orientado en el área de ecuaciones diferenciales enfocándose en el método gráfico para establecer el campo de pendiente de una ecuación diferencial y el método de aproximaciones numéricas para aproximar la solución de una ecuación diferencial. Presenta los métodos de Euler, Runge-Kutta de cuarto orden y el método multipasos de Adams-Bashforth-Moulton. Asimismo, se explica las ecuaciones mediante el uso del software para los métodos gráficos tales como el Maple y Geogebra.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Como la historia lo viene diciendo, en general los resultados importantes y trascendentales en Matemática son los capaces de vincular dos estructuras, en su esencia, totalmente distintas. En el año 1973, el matemático Noruego Marius Sophus Lie (1849-1925) estudiando propiedades de soluciones de sistemas de ecuaciones diferenciales, dio origen a las ideas que conformaron la hoy denominada Teoría de Lie, la cual plantea la relación entre geometría, álgebra y la topología, este matemático creó en gran parte la teoría de la simetría continua, y la aplicó al estudio de la geometría y las ecuaciones diferenciales. Con aportes posteriores de los matemáticos Weyl, Cartan, Chevalley, Killing, Harish Chandra y otros estructuran la teoría de Lie, se presentan en este trabajo de investigación las nociones básicas que subyacen en dicha teoría. En los primeros trabajos de Sophus Lie, la idea subyacente era construir una teoría de grupos continuos, que complementara la ya existente teoría de grupos.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

El estudio de los sistemas dinámicos es un campo importante de la investigación matemática actual. Estos pueden ser clasificados como sistemas dinámicos clásicos y sistemas dinámicos 100% discretos. A su vez los sistemas dinámicos clásicos se pueden dividir en sistemas dinámicos discretos y sistemas dinámicos continuos. El estudio de los sistemas dinámicos clásicos involucra herramientas de cálculo y geometría diferencial. En cambio los sistemas dinámicos 100% discretos se requiere utilizar herramientas de teoría de números, álgebra, combinatoria y teoría de grafos. Históricamente, los sistemas dinámicos llamados finitos sistemas dinámicos discretos no han recibido en modo alguna atención como la han tenido los sistemas continuos. Hay por supuesto muchas razones para esto, una de las cuales es el uso exitoso de las Ecuaciones Diferenciales Ordinarias (EDO’s) y Ecuaciones Diferenciales Parciales (EDP’s) como herramientas analíticas y descriptivas en las ciencias y sus aplicaciones.